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Abstract

We study the homogenization of a linear kinetic equation which models the evolution of the
density of charged particles submitted to a highly oscillating electric field. The electric field and the
initial density are assumed to be random and stationary. We identify the asymptotic microscopic
and macroscopic profiles of the density, and we derive formulas for these profiles when the space
dimension is equal to one.

1 Introduction
This note is concerned with the homogenization of a linear transport equation in a stationary ergodic
setting. The equation studied here describes the evolution of the density of charged particles in a rapidly
oscillating random electric potential. This equation can be derived by passing to the semi-classical limit
in the Schrödinger equation (see [12], [14], and the presentation in [10]). Our work generalizes a result of
E. Frénod and K. Hamdache (see [10]) which was obtained in a periodic setting. The strategy of proof
we have chosen here is different from the one of [10], and allows us to retrieve some of the results in [10]
in a rather simple and explicit fashion.

Let us mention a few related works on the homogenization of linear transport equations ; we emphasize
that this list is by no means exhaustive. In [2], Y. Amirat, K. Hamdache and A. Ziani study the
homogenization of a linear transport equation in a periodic setting and give an application to a model
describing a multidimensional miscible flow in a porous media. In [6] (see also [11]), Laurent Dumas and
François Golse focus on the homogenization of linear transport equations with absorption and scattering
terms, in periodic and stationary ergodic settings. And in [7], Weinan E derives strong convergence
results for the homogenization of linear and nonlinear transport equations with oscillatory incompressible
velocity fields in a periodic setting.

Let us now present the context we will be working in : let (Ω,F , P ) be a probability space, and let
(τx)x∈RN be a group transformation acting on Ω. We assume that τx preserves the probability measure
P for all x ∈ RN , and the group transformation is ergodic, which means

∀A ∈ F ,
(
τxA = A ∀x ∈ RN ⇒ P (A) = 0 or 1

)
.

The periodic setting can be embedded the stationary ergodic setting in the following way (see [17]) :
take Ω = RN/ZN ' [0, 1)N , and let P be the Lebesgue measure on Ω. Define the group transformation
(τx)x∈RN by

τxy = x+ y mod ZN ∀(x, y) ∈ RN × Ω.

Then it is easily checked that τx preserves the measure P for all x ∈ RN , and that the group transfor-
mation is ergodic. Thus the periodic setting is a particular case of the stationary ergodic setting.

We will denote by E[·] the expectation with respect to the probability measure P ; in the periodic
case, we will write 〈f〉 rather than E[f ] to refer to the average of f over one period.

We consider a potential function u = u(y, ω) ∈ L∞(RN × Ω) which is assumed to be stationary, i.e.

u(y + z, ω) = u(y, τzω) ∀(y, z, ω) ∈ RN × RN × Ω.
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Moreover, we assume that 0 ≤ u(y, ω) ≤ umax = supu ∀y ∈ RN , ω ∈ Ω, and u(·) ∈ W 2,∞
loc (RN , L∞(Ω)),

so that there exists a set A ⊂ Ω such that P (A) = 0, and ∇yu(·, ω) is well-defined and locally Lipschitz
continuous on RN , uniformly for ω ∈ Ω \A.

Let fε = fε(t, x, ξ, ω), (t ≥ 0, x ∈ RN , ξ ∈ RN , ω ∈ Ω) be the solution of the transport equation ∂tf
ε(t, x, ξ, ω) + ξ · ∇xf

ε(t, x, ξ, ω)− 1
ε
∇yu

(x
ε
, ω
)
· ∇ξf

ε(t, x, ξ, ω) = 0,

fε(t = 0, x, ξ, ω) = f0

(
x,
x

ε
, ξ, ω

)
.

(1)

Here, we assume that the initial data f0 = f0(x, y, ξ, ω) belongs to L1
loc(RN

x ×RN
ξ , L

∞(RN
y ×Ω)) and

is stationary in y, i.e.

f0(x, y + z, ξ, ω) = f0(x, y, ξ, τzω) for all (x, y, z, ξ, ω) ∈ R4N × Ω.

We set F0(x, ξ, ω) = f0(x, 0, ξ, ω), and we also assume that f0 is such that for all ε > 0, the function

fε(t = 0) : (x, ξ, ω) 7→ f0

(
x,
x

ε
, ξ, ω

)
belongs to L1

loc(RN
x ×RN

ξ , L
1(Ω)) ; this fact does not follow directly from the above assumptions because

in general, the measurability of fε(t = 0) is not clear. However, if F0 ∈ Cc(RN
x , L

1
loc(RN

ξ , L
∞(Ω))), for

instance, then fε(t = 0) is measurable and belongs to L1
loc(RN

x × RN
ξ , L

1(Ω)). We will not comment
further on this restriction and we refer to [4] for other sufficient assumptions on F0. When f0 satisfies
the properties listed above, we say that f0 is an admissible initial data; it can be checked (see [4]) that
any linear combination of functions of the type

χ1(x) χ2(y, ξ, ω)

with χ1 ∈ L1
loc(RN ) and χ2 ∈ L1

loc(RN
ξ , L

∞(RN
y × Ω)), with χ2 stationary, is an admissible initial data.

It is well-known from the classical theory of linear transport equations that for every ω ∈ Ω, there
exists a unique solution fε of (1) in L∞loc((0,∞), L1

loc(RN
x ×RN

ξ )). The goal of this paper is to study the
asymptotic behavior of fε as ε→ 0. Thus, following [10], we define the constraint space K :

Definition 1.1. Let
ξ · ∇yf(y, ξ, ω)−∇yu(y, ω) · ∇ξf(y, ξ, ω) = 0 (2)

be the constraint equation, and let

K := {f ∈ L1
loc(RN

ξ × RN
y , L

1(Ω)); f satisfies (2) in D′(RN
y × RN

ξ ) a.s. in ω}.

We also define the projection P onto the constraint space K, characterised by P(f) ∈ K for f ∈
L1

loc(RN
ξ × RN

y , L
1(Ω)) stationary, and∫

RN×Ω

(P(f)− f)(y, ξ, ω) g(y, ξ, ω) dξ dP (ω) = 0 for a.e. y ∈ RN

for all stationary functions g ∈ L∞(RN
y × RN

ξ × Ω) ∩K, with compact support in ξ.
(A more precise definition of the projection P will be given in the second section).
Finally, we define K⊥ as

K⊥ := {f ∈ L1
loc(RN

ξ × RN
y , L

1(Ω));∃g ∈ L1
loc(RN

ξ × RN
y , L

1(Ω)), f = P(g)− g}.

Remark 1.1. Let us indicate that the constraint equation can easily be derived thanks to a formal two-
scale Ansatz : indeed, assume that

fε(t, x, ξ, ω) ≈ f
(
t, x,

x

ε
, ξ, ω

)
as ε→ 0;

inserting this asymptotic expansion in equation (1), we see that f necessarily satisfies the constraint
equation (2).
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Remark 1.2. Let f, g ∈ L∞(RN
y , L

2(RN
ξ ×Ω)) be stationary, and assume that f ∈ K and g ∈ K⊥. Then

for a.e. y ∈ RN , ∫
RN×Ω

f(y, ξ, ω)g(y, ξ, ω) dξ dP (ω) = 0.

This is a characterization of K⊥ for the class of stationary functions in L∞(RN
y , L

2(RN
ξ × Ω)).

Here, we provide another proof for the result of E. Frénod and K. Hamdache in [10] in the “non-
perturbed case”. Our proof is based on the use of the ergodic theorem, and gives a more concrete insight
of the projection P and of the microscopic behavior of the sequence fε. Moreover, it allows us to retrieve
the explicit formulas of the integrable case.

The first result we prove in this paper is the following theorem :

Theorem 1. Let f0 ∈ L1
loc(RN

x ×RN
ξ ×RN

y ;L1(Ω)) stationary, such that f0 is an admissible initial data.
Let fε = fε(t, x, ξ, ω) be the solution of (1). Then there exist two functions f = f(t, x, y, ξ, ω) and

g = g(t, x; τ, y, ξ, ω), both stationary in y, and a sequence {rε(t, x, ξ, ω)}ε>0 such that for all ε > 0

fε(t, x, ξ, ω) = f
(
t, x,

x

ε
, ξ, ω

)
+ g

(
t, x;

t

ε
,
x

ε
, ξ, ω

)
+ rε(t, x, ξ, ω)

and :

• ||rε||L1
loc((0,∞)×RN

x ×RN
ξ ,L1(Ω)) → 0 as ε→ 0;

• f ∈ L∞loc((0,∞);L1
loc(RN

x × RN
ξ × RN

y ;L1(Ω))), and f(t, x) ∈ K for a.e. t ≥ 0, x ∈ RN ;

• For all T > 0, for all compact set K ⊂ RN
x × RN

ξ × RN
y ,

sup
0≤t≤T,0≤τ≤T

||g||L1(K×Ω) <∞.

Moreover, g(t, x; τ, ·) ∈ K⊥ for a.e. (t, x, τ) ∈ (0,∞)× RN × (0,∞);

• Microscopic evolution equation for g : for a.e. t, x ∈ (0,∞)× RN , g(t, x; ·) is a solution of

∂g

∂τ
+ ξ · ∇yg −∇yu · ∇ξg = 0. (3)

Moreover, for all T > 0∣∣∣∣∣
∣∣∣∣∣
∫ T

0

g

(
t, x;

t

ε
,
x

ε
, ξ, ω

)
dt

∣∣∣∣∣
∣∣∣∣∣
L1

loc(RN
x ×RN

ξ ,L1(Ω))

→ 0 as ε→ 0.

• Macroscopic evolution equation : f and g satisfy

∂t

(
f
g

)
+ ξ](y, ξ, ω) · ∇x

(
f
g

)
= 0, (4)

where
ξ](y, ξ, ω) := P(ξ)(y, ξ, ω);

• Initial data :

f(t = 0, x, y, ξ, ω) = P(f0)(x, y, ξ, ω),
g(t = 0, x; τ = 0, y, ξ, ω) = [f0 − P(f0)] (x, y, ξ, ω).
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Before going any further, we wish to make a few comments on the above results. First, let us stress
that it is not obvious that the function g is well-defined : indeed, let S(t) (t ≥ 0) denote the semi-group
associated to the macroscopic evolution equation (4), and let T (τ) (τ ≥ 0) be the semi-group associated
to the microscopic evolution equation (3). Then g is well defined if and only if, for all stationary function
g0 = g0(x, y, ξ, ω), for all t, τ ≥ 0,

T (τ) [S(t)g0] = S(t) [T (τ)g0] .

This identity follows from the fact that the speed ξ](y, ξ, ω) appearing in equation (4) is a stationary
solution of (3) by definition of the projection P, and is thus invariant by the semi-group T (τ).

Next, let us explain briefly the meaning of theorem 1. The idea is the following : write f0 as
f0 = f0‖+f0⊥, with f0‖(x, ·) ∈ K and f0⊥(x, ·) ∈ K⊥ a.e. Assume that f0‖ and f0⊥ are admissible initial
data. Then fε can be written as fε

‖ + fε
⊥, where fε

‖ (resp. fε
⊥) is the solution of equation (1) with initial

data f0‖ (x, x/ε, ξ, ω) (resp. f0⊥ (x, x/ε, ξ, ω)). Theorem 1 states that

fε
‖ − f

(
t, x,

x

ε
, ξ, ω

)
→ 0

strongly in L1
loc norm. In particular, there are no microscopic oscillations in time in this part of fε. We

wish to emphasize that this result appears to us to be new.
We now focus on the other part, namely fε

⊥. An easy consequence of the theorem is∫ T

0

fε
⊥(t, x, ξ, ω) dt→ 0

in L∞loc(RN
x ;L1

loc(RN
ξ ;L1(Ω))) and for all T > 0. However, it would be wrong to think that fε

⊥ vanishes
in L1

loc((0,∞)× RN
x × RN

ξ , L
1(Ω)), for instance. Indeed

fε
⊥(t, x, ξ, ω) ≈ g

(
t, x;

t

ε
,
x

ε
, ξ, ω

)
in L1

loc, and
||g(t = 0, x; τ, y)||L1(RN

ξ ×Ω) = ||f0⊥(x, y)||L1(RN
ξ ×Ω)

as soon as f0⊥(x, y) ∈ L1(RN
ξ × Ω) for almost every x, y. And if f0⊥ is stationary, then

||f0⊥(x, y)||L1(RN
ξ ×Ω) = ||f0⊥(x, 0)||L1(RN

ξ ×Ω) for a.e. x, y.

Thus, if f0⊥ 6= 0, then for all T > 0, we derive∫ T

0

∣∣∣∣∣∣∣∣g(t, x; tε , xε , ξ, ω
)∣∣∣∣∣∣∣∣

L1(RN
x ×RN

ξ ×Ω)

dt =
∫ T

0

∣∣∣∣∣∣∣∣g(t, x; tε , 0, ξ, ω
)∣∣∣∣∣∣∣∣

L1(RN
x ×RN

ξ ×Ω)

dt

=
∫ T

0

∣∣∣∣∣∣∣∣g(t = 0, x;
t

ε
, 0, ξ, ω

)∣∣∣∣∣∣∣∣
L1(RN

x ×RN
ξ ×Ω)

dt

= T ||f0⊥(x, 0)||L1(RN
x ×RN

ξ ×Ω).

The same kind of inequality holds if the L1 norms are replaced with L1
loc norms, but the derivation of

the inequality with L1
loc norms involves bounds on the function ξ] which will be given later. Thus we

refer to the proof of lemma 3.3 for arguments which yield similar inequalities with L1
loc norms.

Hence fε
⊥ does not vanish strongly in general. In other words, there are fast oscillations in time, due

to the ill-preparedness of the initial data (i.e. the fact that f0(x, ·) /∈ K), but these oscillations do not
cancel out as the small parameter ε vanishes.

Remark 1.3. Some of the equations of theorem 1 can be guessed thanks to a two-scale Ansatz. We have
already explained how equation (2) is obtained. The derivation of the evolution equation (3) is the same
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as the one of (2), except that the Ansatz now involves microscopic oscillations in time. In other words,
if

fε(t, x, ξ, ω) = f0

(
t, x,

t

ε
,
x

ε
, ξ, ω

)
+ εf1

(
t, x,

t

ε
,
x

ε
, ξ, ω

)
+ · · · ,

then f0(t, x, ·) satisfies (3).
The derivation of (4) is less obvious, and in fact we have only been able to compute it for the function

f , that is, when there are no microscopic oscillations in the time variable. Hence, assume that

fε(t, x, ξ, ω) = f0
(
t, x,

x

ε
, ξ, ω

)
+ εf1

(
t, x,

x

ε
, ξ, ω

)
+ · · · .

We insert this expansion in equation (1), and compute the ε0 order term. We obtain

∂tf
0 + ξ · ∇xf

0 + ξ · ∇yf
1 −∇yu · ∇ξf

1 = 0

Thanks to remark 1.2, the term ϕ1(y, ξ, ω) := ξ · ∇yf
1 − ∇yu · ∇ξf

1 belongs to K⊥. Indeed, let g ∈ K
be stationary and smooth, with compact support in ξ. According to Birkhoff’s ergodic theorem, we have,
for all y ∈ RN , and almost surely in ω∫

RN×Ω

ϕ1(y, ξ, ω)g(y, ξ, ω) dξ dP (ω) = lim
R→∞

1
|BR|

∫
BR×RN

ξ

ϕ1(z, ξ, ω)g(z, ξ, ω) dz dξ.

And if f1 and g are smooth,∫
BR×RN

ξ

ϕ1(z, ξ, ω)g(z, ξ, ω) dz dξ = −
∫

BR×RN
ξ

(ξ · ∇zg −∇zu · ∇ξg) (z, ξ, ω)f1(z, ξ, ω) dz dξ

+
∫

∂BR

∫
RN

ξ · nBR
(y)g(z, ξ, ω)f1(z, ξ, ω) dz dξ.

Since g ∈ K and g has compact support in ξ, we deduce that ϕ1 ∈ K⊥ thanks to remark 1.2. Recall also
that f0(t, x, ·) belongs to K almost everywhere. Thus projecting the above equation on K yields (4).

Let us now explain how our strategy of proof differs from the one of E. Frénod and K. Hamdache
in [10]. The authors of [10] used the concept of two-scale convergence, a notion introduced by Gabriel
N’Guetseng in [16], and then formalized and developed by Grégoire Allaire in [1]. We will first explain
briefly what are the main arguments of [10], and then we shall expose the great lines of the proof of the
present paper.

The notion of two-scale convergence relies on a choice of oscillating test functions; the central result
of the theory is the following (see [1]) :

Proposition 1.1. Let U be an open set in RN , and let (gε)ε>0 be a bounded sequence in L2(U). Then
there exists a function g0 ∈ L2(U × [0, 1]N ), and a subsequence (εn) such that εn → 0 as n → ∞, such
that ∫

U

gεn(x)ψ
(
x,
x

ε n

)
dx→

∫
U×[0,1]N

g0(x, y)ψ(x, y) dx dy

for all functions ψ ∈ L2(U ; Cper([0, 1]N )).
It is then said that the sequence gεn two-scale converges towards g0.

This concept can be generalized with no difficulty to functions depending on t and ξ as well. In [10],
the authors pass to the two-scale limit in equation (1), after deriving a priori bounds on the sequence
fε. Using test functions of the type

εϕ
(
t, x,

x

ε
, ξ
)
,

with ϕ ∈ Dper([0,∞)× RN
x × [0, 1]N × RN

ξ ), they first prove that the two-scale limit of the sequence fε,
say f(t, x, y, ξ), satisfies the constraint equation (2). Then, taking test functions of the type

ϕ
(
t, x,

x

ε
, ξ
)
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such that ϕ(t, x, ·) ∈ K almost everywhere, they derive the macroscopic evolution equation (4). The proof
is straight-forward and simpler than the one we present here, but does not include any description of
the microscopic oscillations in time. Moreover, since the method of [10] relies on two-scale convergence,
the result only provides information on the weak-limit (or two-scale limit) of the sequence fε; in other
words, the strong convergence result we state here is new, and cannot be derived by two-scale convergence
techniques.

However, let us mention that the notion of two-scale convergence has been generalized to stationary
settings by Alain Bourgeat, Andro Mikelić and Steve Wright (see [4]); the relevant concept is then called
stochastic two-scale convergence in the mean. The result of [4] is the following :

Proposition 1.2. Assume that L2(Ω, P ) is separable.
Let U be an open set in RN , and let (gε)ε>0 be a bounded sequence in L2(U × Ω). Then there exists

a function g0 ∈ L2(U × Ω), and a subsequence (εn) such that εn → 0 as n→∞, such that∫
U×Ω

gεn(x, ω)ψ
(
x, τ x

εn
ω
)
dx dP (ω) →

∫
U×Ω

g0(x, ω)ψ(x, ω) dx dP (ω),

for any ψ ∈ L2(U × Ω) such that the function

(x, ω) 7→ ψ(x, τxω)

belongs to L2(U × Ω).

It is likely that the arguments of [10] can be generalized to the present case in order to obtain the
same kind of weak convergence results, as long as L2(Ω) is separable. We prefer to focus on a different
method, which is more explicit and which allows for the derivation of strong convergence results.

The key of our analysis lies in the study of the behavior as ε→ 0 of the Hamiltonian system Ẏ ε(t, x, ξ, ω) = −Ξε(t, x, ξ, ω), t > 0
Ξ̇ε(t, y, ξ, ω) = 1

ε∇yu(Y ε(t, x, ξ, ω), ω), t > 0
Y ε(t = 0, x, ξ, ω) = x, Ξε(t = 0, x, ξ, ω) = ξ, (x, ξ, ω) ∈ R2N × Ω.

Indeed, if f0 is smooth, then

fε(t, x, ξ, ω) = f0

(
Y ε(t, x, ξ, ω),

Y ε(t, x, ξ, ω)
ε

,Ξε(t, y, ξ, ω), ω
)
,

so that we can deduce the asymptotic behavior of fε from the one of (Y ε,Ξε). And it is easily checked
that

Y ε(t, x, ξ, ω) = εY

(
t

ε
,
x

ε
, ξ, ω

)
,

Ξε(t, y, ξ, ω) = Ξ
(
t

ε
,
x

ε
, ξ, ω

)
,

where (Y,Ξ) is the solution of the system Ẏ (t, y, ξ, ω) = −Ξ(t, y, ξ, ω), t > 0,
Ξ̇(t, y, ξ, ω) = ∇yu(Y (t, y, ξ, ω), ω), t > 0,
Y (t = 0, y, ξ, ω) = y, Ξ(t = 0, y, ξ, ω) = ξ, (y, ξ, ω) ∈ R2N × Ω.

(5)

Hence, in order to study the limit of fε as ε → 0, we have to investigate the long time behavior of the
system (Y,Ξ), and this will be achieved with the help of the ergodic theorem in the second section.

This dynamical system also allows for a better understanding of the function ξ] appearing in (4).
Indeed, we shall prove in the second section that

ξ](y, ξ, ω) = − lim
T→∞

Y (T, y, ξ, ω)
T

almost everywhere,

so that −ξ] is the rotation vector associated with the dynamics (Y,Ξ).
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In the case where N = 1, we can give explicit formulas for ξ](y, ξ, ω) ; the proof of this formula in the
stationary ergodic case is strongly linked to methods from the Aubry-Mather theory (see [8], [9], [15]),
and thus also to the homogenization of Hamilton-Jacobi equations. In the rest of the paper, we set

H(y, ξ, ω) =
|ξ|2

2
+ u(y, ω).

Let us first recall the definition of the homogenized Hamiltonian H̄ (see [13])

H̄(p) = umax +
1
2


0 if |p| < E

[√
2(umax − u)

]
λ if |p| ≥ E

[√
2(umax − u)

]
, where |p| = E

[√
2(umax − u) + λ

]
.

Proposition 1.3. Assume that N = 1.
Let (y, ξ, ω) ∈ R × R × Ω such that H(y, ξ, ω) > umax. Let P = P (y, ξ, ω) ∈ R such that H̄(P ) =

H(y, ξ, ω) and sgn(P ) = sgn(ξ). Then

ξ](y, ξ, ω) = H̄ ′(P )

Moreover, if L is the dual function of H, i.e.

L(y, p, ω) = sup
ξ∈R

(pξ −H(y, ξ ω)) =
1
2
|p|2 − u(y, ω),

and L̄ is the homogenized Lagrangian (the dual function of H̄), then

P(L)(y, ξ, ω) = L̄(ξ](y, ξ, ω).)

In the periodic case, we will give another proof of the above result; the strategy chosen in that case
is inspired from techniques and calculations in classical mechanics. It also allows to give a formula for
ξ] for low energies in the periodic setting only:

Proposition 1.4. Assume that N = 1 and that the environment is periodic.
Let (y, ξ) ∈ R2 such that H(y, ξ) < umax. Then ξ](y, ξ) = 0.

The organisation of this note is the following : in the second section, we derive some preliminary
results on the long-time behavior of the system (Y,Ξ) thanks to the ergodic theorem. Those will be
useful in the proof of theorem 1, to which is devoted the third section. Eventually, the fourth and last
section is concerned with results in the integrable case, both in the periodic and the stationary ergodic
settings.

2 Preliminaries
This section is largely devoted to the study of the long-time behavior of the Hamiltonian system (Y,Ξ)
defined by (5). First, notice that the Hamiltonian H(y, ξ, ω) := 1

2 |ξ|
2 + u(y, ω) is constant along the

curves of the system (Y,Ξ), and if f ∈ L∞(Ω, C1(RN
y × RN

ξ )) is stationary, then

f ∈ K ⇐⇒ f (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) = f(y, ξ, ω) ∀(y, ξ, ω) ∈ RN × RN × Ω.

Indeed, for all f ∈ L∞(Ω, C1(RN
y × RN

ξ )), we have

∂

∂t
f (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) = {H, f} (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) ,

where {H, f} denotes the Poisson bracket of f and H, i.e.

{H, f} (y, ξ, ω) = ξ · ∇yf(y, ξ, ω)−∇yu(y, ξ, ω) · ∇ξf(y, ξ, ω).
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Let us mention an easily checked property of the trajectories (Y,Ξ) which will be used extensively in
the rest of the article : for all (y, z, ξ) ∈ R3N , for all ω ∈ Ω, t ≥ 0,

Y (t, y, ξ, τzω) + z = Y (t, y + z, ξ, ω),
Ξ(t, y, ξ, τzω) = Ξ(t, y + z, ξ, ω). (6)

In the periodic case, this invariance entails that the hamiltonian system (Y,Ξ) can be considered as a
dynamical system on the N dimensional torus [0, 2π)N . In this periodic setting, it is somewhat natural
to introduce the semi-group of transformations (Tt)t≥0 on [0, 2π)N × RN given by

Tt(y, ξ) = (Y (t, y, ξ),Ξ(t, y, ξ)), y ∈ [0, 2π)N , ξ ∈ RN .

According to Liouville’s theorem, this semi-group preserves the Lebesgue measure on [0, 2π)N × RN ;
moreover, we can construct a family of finite invariant measures on [0, 2π)N ×RN by setting mc(y, ξ) =
1H(y,ξ)≤c dy dξ for c > 0 (remember that the Hamiltonian is constant along the hamiltonian curves).
This construction is the root of the ergodic theorem (see corollary 2.1), and thus of the study of the
long-time behavior of the system (Y,Ξ).

In the stationary ergodic setting, this construction can be generalized as follows : we define the
transformation Tt : RN

ξ × Ω → RN
ξ × Ω by

Tt(ξ, ω) =
(
Ξ(t, 0, ξ, ω), τY (t,0,ξ,ω)ω

)
together with the family of measures

µc := 1H(ξ,ω)≤c dξ dP (ω)

where H(ξ, ω) := 1
2 |ξ|

2 + u(0, ω). It is obvious that for all c ∈ (0,∞), µc is a finite measure on RN
ξ × Ω.

Notice that the “good” generalization to the stationary ergodic setting of the semi-group (Tt) is a semi-
group which acts on RN

ξ × Ω rather than RN
y × RN

ξ . Thanks to the group of transformations (τx)x∈RN ,
the transformations in Ω can result in transformations in RN

y , but the definition chosen here allows us
to define a family of finite invariant measures, whereas such a construction is rather difficult if one tries
to define a semi-group acting on RN

y × RN
ξ . This will be fundamental in the rest of the proof.

Lemma 2.1. (Tt)t≥0 is a semi-group on RN
ξ × Ω and preserves the family of measures µc.

Proof. Let us first prove the semi-group property : let t, s ∈ [0,∞), and (ξ, ω) ∈ RN × Ω; then

Tt ◦ Ts(ξ, ω) = Tt

(
Ξ(s, 0, ξ, ω), τY (s,0,ξ,ω)ω

)
=

(
Ξ(t, 0,Ξ(s, 0, ξ, ω), τY (s,0,ξ,ω)ω), ω′

)
and using the properties (6) we deduce

Ξ(t, 0,Ξ(s, 0, ξ, ω), τY (s,0,ξ,ω)ω) = Ξ(t, Y (s, 0, ξ, ω),Ξ(s, 0, ξ, ω), ω),
= Ξ(t+ s, 0, ξ, ω)

and

ω′ = τY (t,0,Ξ(s,0,ξ,ω),τY (s,0,ξ,ω)ω)τY (s,0,ξ,ω)ω

= τY (t,0,Ξ(s,0,ξ,ω),τY (s,0,ξ,ω)ω)+Y (s,0,ξ,ω)ω

= τY (t,Y (s,0,ξ,ω),Ξ(s,0,ξ,ω),ω)ω

= τY (t+s,0,ξ,ω)ω

Thus
Tt ◦ Ts(ξ, ω) =

(
Ξ(t+ s, 0, ξ, ω), τY (t+s,0,ξ,ω)ω

)
= Tt+s(ξ, ω).

Since it is obvious that T0 = Id, (Tt)t≥0 is a semi-group on RN × Ω.
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We now have to check the invariance property; let F ∈ L1(RN ×Ω;µc) arbitrary. We set f(y, ξ, ω) :=
F (ξ, τyω) for (y, ξ, ω) ∈ RN

y × RN
ξ × Ω, and we compute∫

RN×Ω

F (Tt(ξ, ω)) dµc(ξ, ω) = E

[∫
RN

f(Y (t, 0, ξ, ω),Ξ(t, 0, ξ, ω), ω)1H(Y (t,0,ξ,ω),Ξ(t,0,ξ,ω),ω)≤c dξ

]
.

Since the probability measure P is invariant by the group of transformation τy, and

f(Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) = f(Y (t, 0, ξ, τyω),Ξ(t, 0, ξ, τyω), τyω),

we have, for all y ∈ RN

E
[
f(Y (t, 0, ξ, ω),Ξ(t, 0, ξ, ω), ω)1H(Y (t,0,ξ,ω),Ξ(t,0,ξ,ω),ω)≤c

]
=

= E
[
f(Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω)1H(Y (t,y,ξ,ω),Ξ(t,y,ξ,ω),ω)≤c

]
.

Take an arbitrary function φ ∈ L1(RN
y ), and write∫

RN×Ω

F (Tt(ξ, ω)) dµc(ξ, ω)

= E

[∫
R2N

dy dξφ(y)f(Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω)1H(Y (t,y,ξ,ω),Ξ(t,y,ξ,ω),ω)≤c

]
We change variables in the integral in (y, ξ) by setting (x, v) = (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω)); according to
Liouville’s theorem, the jacobian of this change of variables is equal to 1, and

(x, v) = (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω)) ⇐⇒ (y, ξ) = (X(t, x, v, ω), V (t, x, v, ω)),

where (X,V ) is a solution of the Hamiltonian system Ẋ = V,

V̇ = −∇u(X,ω),
(X,V )(t = 0, x, v) = (x, v).

Observe that in the present case, we have simply

X(t, x, v, ω) = Y (t, x,−v, ω),

so that (X,V ) satisfies relations (6).
Hence ∫

R2N

dy dξ φ(y)f(Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω)1H(Y (t,y,ξ,ω),Ξ(t,y,ξ,ω),ω)≤c

=
∫

R2N

dx dv φ(X(t, x, v, ω))f(x, v, ω)1H(x,v,ω)≤c

=
∫

R2N

dx dv φ(X(t, 0, v, τxω) + x)F (v, τxω)1H(v,τxω)≤c

so that ∫
RN×Ω

F (Tt(ξ, ω)) dµc(ξ, ω)

= E

[∫
R2N

dx dv φ(X(t, 0, v, τxω) + x)F (v, τxω)1H(v,τxω)≤c

]
= E

[∫
R2N

dx dv φ(X(t, 0, v, ω) + x)F (v, ω)1H(v,ω)≤c

]
= E

[∫
RN

dv

(∫
RN

φ(X(t, 0, v, ω) + x) dx
)
F (v, ω)1H(v,ω)≤c

]
= E

[∫
RN

dvF (v, ω)1H(v,ω)≤c

]
=
∫

RN×Ω

F dµc
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since the integral of φ is equal to 1.
Hence, we have proved that for all F ∈ L1(R× Ω;µc), for all t ≥ 0,∫

RN×Ω

F (Tt(ξ, ω)) dµc(ξ, ω) =
∫

RN×Ω

F (ξ, ω) dµc(ξ, ω),

which means exactly that µc is invariant by the semi-group (Tt)t≥0.

The following corollary is an immediate consequence of Birkhoff’s ergodic theorem:

Corollary 2.1. Let F ∈ L1(RN × Ω;µc). There exists a function F̄ ∈ L1(RN × Ω;µc) such that as
T →∞,

1
T

∫ T

0

F (Tt(ξ, ω)) dt→ F̄ (ξ, ω)

a.e. on RN × Ω and in L1(µc). Moreover, F̄ is invariant by Tt for all t > 0, and∫
RN×Ω

F dµc =
∫

RN×Ω

F̄ dµc. (7)

Additionally, if f̄ = f̄(y, ξ, ω) is the stationary function associated to F̄ , that is, f̄(y, ξ, ω) = F̄ (ξ, τyω),
then f̄ is invariant by the hamiltonian flow (Y,Ξ); precisely, for a.e. (y, ξ, ω) ∈ R2N × Ω, t > 0

f̄(Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) = f̄(y, ξ, ω).

Proof. We only have to prove the invariance of f̄ by the Hamiltonian flow; first, for y = 0, we have

f̄(Y (t, 0, ξ, ω),Ξ(t, 0, ξ, ω), ω) = F̄ (Ξ(t, 0, ξ, ω), τY (t,0,ξ,ω)ω) = F̄ (Tt(ξ, ω))
= F̄ (ξ, ω) = f̄(0, ξ, ω)

and the property is proved when y = 0.
For y ∈ RN arbitrary,

f̄(Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) = f̄(Y (t, 0, ξ, τyω) + y,Ξ(t, 0, ξ, τyω), ω)
= f̄(Y (t, 0, ξ, τyω),Ξ(t, 0, ξ, τyω), τyω)
= f̄(0, ξ, τyω) = f̄(y, ξ, ω)

according to the result in the case y = 0.

Remark 2.1. We mention here an important but easy consequence of the relations (6) and the invariance
of the measure P with respect to the transformation group τy, y ∈ RN : for any stationary function
f = f(y, ξ, ω) = F (ξ, τyω), F ∈ L∞(RN × Ω), we have

E[f(Y (t, y, ξ, ·),Ξ(t, y, ξ, ·), ·)] = E[F (Tt(ξ, ·))]

for all t > 0, y, ξ ∈ RN ; in particular, the left-hand side of the above equality does not depend on y.
This property was used in the proof of lemma 2.1

Remark 2.2. Let us precise a little what happens when the function F ∈ L1
loc(RN

ξ , L
1(Ω)). In that case,

F ∈ L1(RN
ξ ×Ω;µc) for all c > 0. Consequently, for any c > 0, we can define the function F̄c associated

to F by corollary 2.1.
It is then easily proved that for any 0 < c < c′, F̄c = F̄c′ , µc-almost everywhere. Setting

Suppµn := {(ξ, ω),H(ξ, ω) ≤ n},
An = {(ξ, ω) ∈ Suppµn; F̄n(y, ξ) 6= F̄n+1(y, ξ)}

A :=
∞⋃

n=0

An,
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we see that µc(A) = 0 for all c > 0. Moreover, for all (ξ, ω) ∈ RN × Ω \ A, for all integers k, l such
that (ξ, ω) ∈ Suppµk ∩ Suppµl, we have F̄k(ξ, ω) = F̄l(ξ, ω). We can thus define a function F̄ (ξ, ω) on
RN × Ω \A by

F̄ (ξ, ω) = F̄n(ξ, ω) for any n ∈ N such that (ξ, ω) ∈ Suppµn

We then now that
1
T

∫ T

0

F (Tt(ξ, ω)) dt→ F̄ (ξ, ω) (8)

as T → ∞, and the convergence holds in L1(µc) for all c > 0, and µn almost everywhere for n ∈ N.
Eventually, setting

B := {(ξ, ω) ∈ RN × Ω \A;
1
T

∫ T

0

F (Tt(ξ, ω)) dt does not converge towards F̄ (ξ, ω) as T →∞}

it is easily proved that µc(B) = 0 for all c > 0 (the equality is true for c ∈ N, and is then deduced for
c > 0 arbitrary because the family of measures (µc) is increasing in c).

Eventually, we have found a function F̄ ∈ L1
loc(RN , L1(Ω)), independent of c, such that (8) holds in

L1(µc) and µc-almost everywhere for all c > 0.

Remark 2.3. The construction above allows us to make more precise what we mean by projection P:
let f = f(y, ξ, ω) be a stationary function, f ∈ L∞(RN

y , L
1
loc(RN

ξ , L
1(Ω))), and set F (ξ, ω) = f(0, ξ, ω) ∈

L1
loc(RN

ξ , L
1(Ω)). We can then associate to F a function F̄ ∈ L1

loc(RN
ξ , L

1(Ω)) such that (8) holds in
L1(µc) for all c (see remark 2.2). We set

P(f)(y, ξ, ω) := F̄ (ξ, τyω).

It follows from corollary 2.1 that P(f) is invariant by the hamiltonian flow (5), and thus satisfies the
constraint equation. From now on, we take this definition for the projection P, instead of the one given
in the introduction. Notice that, for all y ∈ RN and µc-almost everywhere,

P(f)(y, ξ, ω) = lim
T→∞

1
T

∫ T

0

F (Tt(ξ, τyω)) dt

= lim
T→∞

1
T

∫ T

0

f (Y (t, 0, ξ, τyω),Ξ(t, 0, ξ, τyω), τyω) dt

= lim
T→∞

1
T

∫ T

0

f (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) dt

And we also give a more precise definition of ξ](y, ξ, ω) : let

RN × Ω → RN

ξ̂ : (ξ, ω) 7→ ξ .

Then ξ̂ ∈ L1(RN × Ω, µc) for all c > 0, and

ξ](y, ξ, ω) = P (ξ̂)(y, ξ, ω) = lim
T→∞

1
T

∫ T

0

Ξ(t, y, ξ, ω) dt

almost everywhere and in L1(µc) for all 0 < c <∞.

Eventually, we mention here a property that will be used in the proof of the theorem; with the same
notations as above, let

φ(τ, y, ξ, ω) = F (Tτ (ξ, τyω)) ,

with F ∈ L1
loc(RN

ξ , L
1(Ω)). Then φ is a solution of the evolution equation

∂τφ+ ξ · ∇yφ−∇yu · ∇ξφ = 0,

with initial data φ(τ = 0, y, ξ, ω) = f(y, ξ, ω) = F (ξ, τyω). This is a classical fact if φ is C1 in the
variables y, ξ; thanks to a contraction property for the transport equation (3) and a density result which
will be stated later (see lemma 3.2), it is true when F merely belongs to L1. In order to avoid technical
details at this stage, we omit the proof of this result for weak (that is, L1) solutions.
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3 The general N-dimensional case
This section is devoted to the proof of theorem 1. The proof is divided in three steps : first, we study
the case of an initial data which does not depend on x, then the case when the initial data only depends
on x (and not on y, ξ, ω), and eventually, we treat the general case.

3.1 First case : f0 does not depend on x

Here, we assume that f0 = f0(y, ξ, ω) ∈ L1
loc(RN

ξ ;L∞(RN
y ×Ω))∩C1(RN

ξ ×RN
y , L

∞(Ω)). The smoothness
assumption will be removed in the third section. Recall that f0 is stationary, that is, f0(y + z, ξ, ω) =
f0(y, ξ, τzω) a.s. in ω, for all (y, z, ξ) ∈ R3N . In the rest of the subsection, we set

F0(ξ, ω) := f0(0, ξ, ω)

and

F̄0(ξ, ω) := lim
T→∞

1
T

∫ T

0

F0(Tt(ξ, ω)) dt, f̄0(y, ξ, ω) = F̄0(ξ, τyω).

Notice that F0 ∈ L1
loc(RN

ξ ;L∞(Ω)), and thus F0 ∈ L1(RN × Ω;µc) for all c > 0.
In that case,

fε(t, x, ξ, ω) = f0

(
Y

(
t

ε
,
x

ε
, ξ, ω

)
,Ξ
(
t

ε
,
x

ε
, ξ, ω

)
, ω

)
= f0

(
Y

(
t

ε
, 0, ξ, τ x

ε
ω

)
,Ξ
(
t

ε
, 0, ξ, τ x

ε
ω

)
, τ x

ε
ω

)
= F0

(
T t

ε

(
ξ, τ x

ε
ω
))

= f̄0

(x
ε
, ξ, ω

)
+
{
F0

(
T t

ε

(
ξ, τ x

ε
ω
))
− F̄0

(
ξ, τ x

ε
ω
)}

In accordance with theorem 1, we set

g(τ, y, ξ, ω) =
(
F0 − F̄0

)
(Tτ (ξ, τyω)) ,

and rε = 0. Then g satisfies the microscopic evolution equation (3) thanks to the remark at the end of the
preceding section. Moreover, g(τ) ∈ K⊥ by definition of K⊥ and because P (F0 (Tτ (ξ, τyω))) = F̄0(ξ, τyω).
Notice also that f̄0 = P(f0) thanks to remark 2.3.

There only remains to check that∫ T

0

g

(
t

ε
,
x

ε
, ξ, ω

)
dt→ 0 as ε→ 0 (9)

in L1
loc(RN

x , L
1(RN × Ω, µc)) for all T > 0 and c > 0.

The invariance of the measure P with respect to the group of transformations (τx)x∈RN (see remark
2.1) entails that∫

Ω×RN
ξ

∣∣∣∣∣ 1
T
ε

∫ T
ε

0

f0

(
Y
(
t,
x

ε
, ξ, ω

)
,Ξ
(
t,
x

ε
, ξ, ω

)
, ω
)
dt− f̄0

(x
ε
, ξ, ω

)∣∣∣∣∣ dµc(ξ, ω)

=
∫

Ω×RN
ξ

∣∣∣∣∣ 1
T
ε

∫ T
ε

0

F0 (Tt(ξ, ω)) dt− F̄0 (ξ, ω)

∣∣∣∣∣ dµc(ξ, ω)

and the term above goes to 0 as ε → 0 according to corollary 2.1 and is independent of x ∈ RN . Thus
theorem 1 is proved in the case when f0 does not depend on the macroscopic variable x.

The following remark will prove to be useful when treating the general case :
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Remark 3.1. If f0 ∈ L∞ (and f0 is C1 in the variables y, ξ), then for any function a ∈ L∞((0,∞) ×
RN

x × RN
y × RN

ξ × Ω), stationary in y, we have∫ T

0

a
(
t, x,

x

ε
, ξ, ω

)
g

(
t

ε
,
x

ε
, ξ, ω

)
dt→ 0 as ε→ 0

in L1
loc(RN

x , L
1(RN

ξ × Ω, µc)) for all T > 0 and c > 0.
Indeed, let us first prove the property for a = a1(t)a2(x, y, ξ, ω), with a1, a2 ∈ L∞. If a1 is an

indicator function of the type
a1(t) = 1T1<t<T2 ,

the the property follows from the equality∫ T

0

a1 (t) g
(
t

ε
,
x

ε
, ξ, ω

)
dt =

∫ inf(T,T2)

0

g

(
t

ε
,
x

ε
, ξ, ω

)
dt−

∫ inf(T,T1)

0

g

(
t

ε
,
x

ε
, ξ, ω

)
dt.

According to (9), the convergence result thus follows for a(t, y, ξ, ω) = a1(t)a2(y, ξω). Then, let a1 ∈
L∞([0,∞)) be arbitrary, and let T > 0, n ∈ N∗. Let bn ∈ L∞(([0,∞)) such that ||a1 − bn||L1(0,T ) ≤ 1/n,
and

bn =
Nn∑
i=1

αi,n1Ti,n<t<Ti′,n ,

with Nn ∈ N, αi,n ∈ R, Ti,n, T
′
i,n > 0. We have∣∣∣∣∣

∫ T

0

bn(t) a2

(
x,
x

ε
, ξ, ω

)
g

(
t

ε
,
x

ε
, ξ, ω

)
dt

∣∣∣∣∣ =
∣∣∣a2

(
x,
x

ε
, ξ, ω

)∣∣∣ ∣∣∣∣∣
∫ T

0

bn(t)g
(
t

ε
,
x

ε
, ξ, ω

)
dt

∣∣∣∣∣
≤ ||a2||L∞

∣∣∣∣∣
∫ T

0

bn(t)g
(
t

ε
,
x

ε
, ξ, ω

)
dt

∣∣∣∣∣
and the last term in the right-hand side vanishes as ε → 0 in L1

loc(RN
x , L

1(RN × Ω, µc)) by linearity.
Moreover,∣∣∣∣∣

∫ T

0

a1(t) a2

(
x,
x

ε
, ξ, ω

)
g

(
t

ε
,
x

ε
, ξ, ω

)
dt

∣∣∣∣∣ ≤

∣∣∣∣∣
∫ T

0

bn(t) a2

(
x,
x

ε
, ξ, ω

)
g

(
t

ε
,
x

ε
, ξ, ω

)
dt

∣∣∣∣∣
+

1
n
||a2||L∞ ||f0||L∞ .

Thus the result holds for a = a1(t)a2(y, ξ, ω), with a1, a2 ∈ L∞ arbitrary.
For a arbitrary, take a sequence aδ with δ > 0, converging to a in L1

loc, and such that

aδ =
nδ∑

k=0

aδ
1(t)a

δ
2(x, y, ξ, ω).

with aδ
1, a

δ
2 in L∞. The property is known for aδ, and it is thus easily deduced for a using arguments

similar to the ones developed above.

3.2 Second case : f0 = f0(x)

Unlike the preceding subsection, we now focus on the case when f0 only depends on the macroscopic
variable x. In order to simplify the analysis, we assume that f0 ∈ W 1,∞(RN

x ) (the case when f0 is not
smooth in x will be treated in the next subsection). In that case,

fε(t, x, ξ, ω) = f0

(
εY

(
t

ε
,
x

ε
, ξ, ω

))
.
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Hence we have to investigate the behavior as ε→ 0 of

εY

(
t

ε
,
x

ε
, ξ, ω

)
.

We prove the following

Lemma 3.1. Let T > 0 arbitrary. As ε vanishes,

εY

(
t

ε
,
x

ε
, ξ, ω

)
− x+ tξ]

(x
ε
, ξ, ω

)
→ 0

in L∞((0, T )× RN
x ;L1(RN

ξ × Ω, µc)).

Proof. Let us write, for t > 0

εY

(
t

ε
,
x

ε
, ξ, ω

)
− x+ tξ]

(x
ε
, ξ, ω

)
= ε

∫ t
ε

0

Ẏ
(
s,
x

ε
, ξ, ω

)
ds+ tξ]

(x
ε
, ξ, ω

)
= −tε

t

∫ t
ε

0

Ξ
(
s,
x

ε
, ξ, ω

)
ds+ tξ]

(x
ε
, ξ, ω

)
= −t

{
ε

t

∫ t
ε

0

ξ̂
(
Ts(ξ, τ x

ε
ω)
)
ds− ξ]

(x
ε
, ξ, ω

)}
.

Let 0 < α < T arbitrary. For α ≤ t ≤ T , we have∫
RN

ξ ×Ω

∣∣∣∣εY ( tε , xε , ξ, ω
)
− x+ tξ]

(x
ε
, ξ, ω

)∣∣∣∣ dµc(ξ, ω)

= t

∫
RN

ξ ×Ω

∣∣∣∣∣εt
∫ t

ε

0

ξ̂ (Ts(ξ, ω)) ds− ξ] (0, ξ, ω)

∣∣∣∣∣ dµc(ξ, ω)

≤ T sup
τ≥α

ε

∣∣∣∣∣∣∣∣1τ
∫ τ

0

ξ̂ (Ts(ξ, ω)) ds− ξ] (0, ξ, ω)
∣∣∣∣∣∣∣∣

L1(RN×Ω,µc)

and the upper-bound vanishes as ε → 0 for any α > 0 thanks to corollary 2.1. Notice that the upper-
bound does not depend on x, hence the convergence holds in L∞(RN

x ;L1(µc)).
We now have to investigate what happens when t is close to 0; notice that

sup
x∈RN

∣∣∣∣∣∣ξ]
(x
ε
, ξ, ω

)∣∣∣∣∣∣
L1(RN×Ω,µc)

≤ C0 (10)

where the constant C0 only depends on N and c. Indeed, if H(ξ, ω) ≤ c, then for all t ≥ 0,

1
2
|Ξ(t, 0, ξ, ω)|2 ≤ H(Tt(ξ, ω)) = H(ξ, ω) ≤ c.

Thus, if H(ξ, ω) ≤ c, then
ξ](0, ξ, ω) ≤

√
2cN.

Thus inequality (10) holds with C0 =
√

2cN .
Similarly, for all t ≥ 0,

sup
x∈RN

∣∣∣∣∣∣ξ̂ (Ts(ξ, τ x
ε
ω)
)∣∣∣∣∣∣

L1(RN×Ω,µc)
≤ C0.

Hence, if 0 ≤ t ≤ α, we have

sup
x∈RN

∫
RN

ξ ×Ω

∣∣∣∣εY ( tε , xε , ξ, ω
)
− x+ ξ]

(x
ε
, ξ, ω

)∣∣∣∣ dµc(ξ, ω) ≤ 2αC0.
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Eventually,∣∣∣∣∣∣∣∣εY ( tε , xε , ξ, ω
)
− x+ tξ]

(x
ε
, ξ, ω

)∣∣∣∣∣∣∣∣
L∞((0,T )×RN ;L1(µc))

≤

≤ inf
0<α<T

{
2C0α+ T sup

τ≥α
ε

∣∣∣∣∣∣∣∣1τ
∫ τ

0

ξ̂ (Ts(ξ, ω)) ds− ξ] (0, ξ, ω)
∣∣∣∣∣∣∣∣

L1(µc)

}
and the lemma is proved.

We easily deduce that theorem 1 is true when f0 ∈W 1,∞(RN ) with

f(t, x, y, ξ, ω) := f0(x− tξ](y, ξ, ω)), g = 0,

rε(t, x, ξ, ω) := fε(t, x, ξ, ω)− f
(
t, x,

x

ε
, ξ, ω

)
and it is easily checked that f satisfies P(f) = f , f(t = 0) = P(f0) = f0 (since f0 is independent of y and
ξ), and that f is a solution of the evolution equation (4).

3.3 Third case : f0 arbitrary
We now tackle the case of an arbitrary stationary function f0 ∈ L1

loc(RN
x ×RN

ξ , L
∞(RN

y ×Ω)). We begin
with the case when

f0(x, y, ξ, ω) = a(x)b(y, ξ, ω),

with a ∈W 1,∞(RN ) and b ∈ L∞(RN
y ×RN

ξ ×Ω) ∩ C1(RN
y ×RN

ξ , L
∞(Ω)), b stationary. This case follows

directly from the two first subsections. Indeed, let

f(t, x, y, ξ, ω) = a(x− tξ](y, ξ, ω)) P(b)(y, ξ, ω),

and
g(t, x; τ, y, ξ, ω) = a(x− tξ](y, ξ, ω)) (b− P(b)) (Tτ (y, ξ, ω)).

It is already known that f and g satisfy (4), that f(t, x, ·) ∈ K, and that g satisfies (3) thanks to the
preceding subsections and the fact that ξ](y, ξ, ω) is invariant by the Hamiltonian flow (Y,Ξ). Notice
that it is capital here that the coefficient ξ](y, ξ, ω) in the transport equation (4) belongs to K.

There remains to check that g(t, x; τ, ·) ∈ K⊥, that the remainder rε goes to 0 strongly in L1
loc and that

g(t, x; t/ε, x/ε, ξ, ω) goes weakly to 0 in the sense of theorem 1. First, notice that a(x− tξ](y, ξ, ω)) ∈ K
and (b− P(b)) (Tτ (y, ξ, ω)) ∈ K⊥. Thus, a(x − tξ])P(b) = P(a(x − tξ])b) almost everywhere (because
a(x− tξ](0, ξ, ω)) is invariant by the semi-group Tτ ), and consequently

g(t, x; τ, y, ξ, ω) =
[
a(x− tξ])b− P

(
a(x− tξ])b

)]
(Tτ (ξ, τyω)).

Hence g(t, x; τ, ·) ∈ K⊥ a.e.
Then, setting

rε(t, x, ξ, ω) = fε(t, x, ξ, ω)− f
(
t, x,

x

ε
, ξ, ω

)
− g

(
t, x;

t

ε
,
x

ε
, ξ, ω

)
,

we have to prove that rε goes to 0 strongly in L1
loc. We compute the difference

fε(t, x, ξ, ω)− f
(
t, x,

x

ε
, ξ, ω

)
− g

(
t, x;

t

ε
,
x

ε
, ξ, ω

)
= a

(
εY

(
t

ε
,
x

ε
, ξ, ω

))
b

(
Y

(
t

ε
,
x

ε
, ξ, ω

)
,Ξ
(
t

ε
,
x

ε
, ξ, ω

)
, ω

)
−a
(
x− tξ]

(x
ε
, ξ, ω

))
P(b)

(x
ε
, ξ, ω

)
−a
(
x− tξ]

(x
ε
, ξ, ω

))
[b− P(b)]

(
Y

(
t

ε
,
x

ε
, ξ, ω

)
,Ξ
(
t

ε
,
x

ε
, ξ, ω

)
, ω

)
=

[
a

(
εY

(
t

ε
,
x

ε
, ξ, ω

))
− a

(
x− tξ]

(x
ε
, ξ, ω

))]
b

(
Y

(
t

ε
,
x

ε
, ξ, ω

)
,Ξ
(
t

ε
,
x

ε
, ξ, ω

)
, ω

)
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The right-hand side of the above equality is bounded by

||a||W 1,∞ ||b||L∞
∣∣∣∣εY ( tε , xε , ξ, ω

)
− x+ tξ]

(x
ε
, ξ, ω

)∣∣∣∣
and thus converges to 0 as ε→ 0 in L∞((0, T )×RN

x ;L1(RN
ξ ×Ω, µc))) according to the second subsection.

Moreover, it is easily proved that as ε→ 0,∫ T

0

g

(
t, x;

t

ε
,
x

ε
, ξ, ω

)
dt→ 0

strongly in L1
loc(RN

x × RN
ξ , L

1(Ω)) thanks to remark 3.1. Hence theorem 1 is proved in that case.
The general case now follows from a density result and a contraction property, which are stated in

the two lemmas below. We first explain how the general case can be deduced from the lemmas, and then
we prove the lemmas.

The first lemma states that linear combinations of functions of the type a(x)b(y, ξ, ω), with a and b
smooth, are dense in L1

loc(RN
x × RN

ξ , L
∞(RN

y × Ω)).

Lemma 3.2. Let f0 ∈ L1
loc(RN

x × RN
ξ , L

∞(RN
y × Ω)) arbitrary, and set F0(x, ξ, ω) := f0(x, 0, ξ, ω). Let

R,R′ > 0 arbitrary.
There exists a sequence of functions Fn ∈ L1(RN

x × RN
ξ × Ω) such that

• Fn → F0 as n→∞ in L1(BR ×BR′ × Ω) ;

• For all n ∈ N, there exist an integer Nn ∈ N and functions an
i ∈ C1∩W 1,∞(RN ), bni ∈ L∞(RN

ξ ×Ω),
1 ≤ i ≤ Nn, such that almost surely in ω, for all (x, ξ) ∈ R2N

Fn(x, ξ, ω) =
Nn∑
i=1

an
i (x) bni (ξ, ω) ;

• For all n ∈ N, for 1 ≤ i ≤ Nn, the function

(y, ξ, ω) 7→ bni (ξ, τyω)

belongs to C1(RN
y × RN

ξ , L
∞(Ω)).

The second lemma states a contraction property for equation (1) and for equation (4).

Lemma 3.3. Let g0 ∈ L1
loc(RN

x × RN
ξ , L

∞(RN
y × Ω)) be a stationary admissible data for (1). Let gε be

the solution of (1) with initial data g0 (x, x/ε, ξ, ω). Then for all R,R′, T > 0, for all t ∈ [0, T ],

E

[∫
x∈BR, ξ∈BR′

|gε(t, x, ξ, ω)| dx dξ

]
≤ ||G0||L1(CR,T,R′×RN

ξ ×Ω,dx dµc
R′

(ξ,ω)) (11)

where

G0(x, ξ, ω) := g0(x, 0, ξ, ω),

CR,T,R′ :=
{
x ∈ RN , |x| ≤ R+ T

√
R′2 + 2umax

}
,

cR′ :=
1
2
R′

2 + umax.

Similarly, if g is a solution of (4) with initial data g0 ∈ L1
loc(RN

x × RN
ξ , L

∞(RN
y × Ω)), then∫

x≤R

|g(t, x, y, ξ, ω)| dx ≤
∫

x≤R+T
√

ξ2+2umax

|g0(x, y, ξ, ω)| dx. (12)

And if h is solution of (3) with initial data h0 ∈ L1
loc(RN

ξ , L
∞(RN

y × Ω)), then for all y ∈ RN , τ ≥ 0,

E

[∫
ξ∈BR′

|h(τ, y, ξ, ω)| dξ

]
≤
∫

RN
ξ ×Ω

|h0|(y, ξ ω) dµcR′ (ξ, ω). (13)
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We postpone the proofs of lemmas 3.2 and 3.3.
Now, let R,R′ > 0 abritrary, and let Fn be a sequence converging to F0 in L1(BR × BR′ × Ω) as in

lemma 3.2. Assume that f0 is an admissible initial data for (1), and let fε
n (resp. fε) be the solution of (1)

with initial data Fn

(
x, ξ, τ x

ε
ω
)

(resp. F0

(
x, ξ, τ x

ε
ω
)
), and let fn = fn(t, x, y, ξ, ω), gn = gn(t, x; τ, y, ξ, ω)

be the functions associated to fε
n by theorem 1 for all n.

Let f(t, x, y, ξ, ω), g(t, x; τ, y, ξ, ω) be the solutions of the system

P(f) = f, P(g) = 0,

∂t

(
f
g

)
+ ξ](y, ξ, ω) · ∇x

(
f
g

)
= 0,

∂τg + ξ · ∇yg −∇yu(y, ω) · ∇ξg = 0,
f(t = 0) = P(f0), g(t = 0, x; τ = 0, y, ξ, ω) = [f0 − P(f0)] (x, y, ξ, ω).

We have already proved that fn, gn satisfy the above system. We denote by F̄0, F̄n, the functions
associated to F0, Fn respectively by corollary 2.1, so that P(f0)(x, y, ξ, ω) = F̄0(x, ξ, τyω), and fn(t =
0, x, y, ξ, ω) = F̄n(x, ξ, τyω), gn(t = 0, x, τ = 0, y, ξ, ω) = (Fn − F̄n)(x, ξ, τyω).

Notice that if G ∈ L1(RN
ξ × Ω, µc), for some c > 0, then µc almost everywhere

|Ḡ(ξ, ω)| = lim
T→∞

1
T

∣∣∣∣∣
∫ T

0

G(Tt(ξ, ω)) dt

∣∣∣∣∣
≤ lim

T→∞

1
T

∫ T

0

|G(Tt(ξ, ω))| dt = |G| (y, ξ),

and thus, according to property (7),

||Ḡ||L1(RN
ξ ×Ω,µc) ≤

∫
RN×Ω

|G| (y, ξ) dµc(y, ξ)

=
∫

RN×Ω

|G|(y, ξ) dµc(y, ξ) = ||G||L1(RN
ξ ×Ω,µc).

Consequently, setting c := cR′ , we have

||f(t, ·, y, ξ, ω)− fn(t, ·, y, ξ, ω)||L1(BR) ≤
∣∣∣∣F̄0(·, ξ, τyω)− F̄n(·, ξ, τyω)

∣∣∣∣
L1(CR,T,ξ)

||f(t, x, y, ξ, ω)− fn(t, x, y, ξ, ω)||L1(BR×BR′×Ω) ≤
∣∣∣∣F0 − Fn

∣∣∣∣
L1(CR,T,R′×RN

ξ ×Ω,dxdµc(ξ,ω))

≤ ||F0 − Fn||L1(CR,T,R′×RN
ξ ×Ω,dxdµc(ξ,ω)) .

And similarly, using (11), (12), (13),

||fε(t, x, ξ, ω)− fε
n(t, x, ξ, ω)||L1(BR×BR′×Ω) ≤ ||F0 − Fn||L1(CR,T,R′×RN

ξ ×Ω,dx dµc(ξ,ω)),

||g(t, x; τ, y, ξ, ω)− gn(t, x; τ, y, ξ, ω)||L1(BR×BR′×Ω) ≤ 2 ||F0 − Fn||L1(CR,T,R′×RN
ξ ×Ω,dxdµc(ξ,ω)) .

The above inequalities are true for all t ∈ [0, T ] and for all τ ≥ 0.
Set

rε(t, x, ξ, ω) := fε(t, x, ξ, ω)− f
(
t, x,

x

ε
, ξ, ω

)
− g

(
t, x;

t

ε
,
x

ε
, ξ, ω

)
.

Then for all t ∈ [0, T ], for all n ∈ N,

||rε(t)||L1(BR×BR′×Ω) ≤ ||fε(t)− fε
n(t)||L1(BR×BR′×Ω)

+||f(t)− fn(t)||L∞(RN
y ;L1(BR×BR′×Ω))

+
∣∣∣∣∣∣∣∣g(t; tε

)
− gn

(
t;
t

ε

)∣∣∣∣∣∣∣∣
L∞(RN

y ;L1(BR×BR′×Ω))

+||rε
n(t)||L1(BR×BR′×Ω)

≤ 4 ||F0 − Fn||L1(CR,T,R′×RN
ξ ×Ω,dxdµc(ξ,ω)) + ||rε

n(t)||L1(BR×BR′×Ω).
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Thus rε → 0 as ε→ 0 in L∞([0,∞);L1
loc(RN

x × RN
ξ ;L1(Ω)).

There only remains to check that
∫ T

0
g(t, x; t/ε, x/ε, ξ, ω) dt goes strongly to 0 in L1

loc norm as ε
vanishes; this result follows immediately from the same property for gn and the above inequalities.
Therefore, we skip its proof.

We now tackle the proofs of lemmas 3.2 and 3.3.

Proof of Lemma 3.2. We use the results of chapter 2 in [5]. Since F0 ∈ L1(BR × BR′+1, L
∞(Ω)), F0 ∈

L1(BR, L
1(BR′+1 × Ω)). Thus, there exists a sequence of functions (F̃n)n∈N such that F̃n → F0 in

L1(BR ×BR′+1 × Ω), and for all n ∈ N,

F̃n =
Nn∑
i=1

1Ai,n
(x)φi,n(ξ, ω),

where Nn ∈ N, and :

• for all n ∈ N, 1 ≤ i ≤ Nn, Ai,n ⊂ BR is a measurable set;

• for all n ∈ N, 1 ≤ i ≤ Nn, φi,n ∈ L1(BR′+1 × Ω).

We shall explain later why we have chosen an approximating sequence in L1(BR × BR′+1 × Ω) rather
than L1(BR ×BR′ × Ω).

The idea is to replace F̃n by a function Fn having the same structure, but in which the functions 1Ai,n ,
φi,n have been regularized. Hence we consider a mollifier ρ ∈ D(RN ) such that ρ ≥ 0 and

∫
RN ρ = 1. For

k ∈ N, set
ρk(x) = kNρ(kx), x ∈ RN .

The regularization by convolution in the variable x is standard : 1Ai,n(x) is replaced by

1Ai,n ∗x ρk(x) =
∫

RN

1Ai,n(y)ρk(x− y).

Concerning the regularization of the functions φi,n, we first truncate φi,n in order to obtain a function
in L∞. For M > 0, set

φM
i,n := sgn(φi,n) inf(|φi,n|,M).

Then φM
i,n ∈ L∞(BR′+1 × Ω), and φM

i,n converges towards φi,n as M → ∞ in L1(BR′+1 × Ω). Thus we
work with φM

i,n instead of φi,n, and we drop the superscript M in order to avoid too heavy notations.
Now, for k ∈ N, we set, for y ∈ RN , ξ ∈ BR′ ,

ϕi,n(y, ξ, ω) = φi,n(ξ, τyω),

ϕk
i,n(y, ξ, ω) =

∫
R2N

φi,n(ξ′, τy′ω) ρk(y − y′)ρk(ξ − ξ′) dy′ dξ′,

φk
i,n(ξ, ω) = ϕk

i,n(0, ξ, ω).

This is the part where it is convenient to have φi,n ∈ L1(BR′+1,Ω). Indeed, if ξ ∈ BR′ and |ξ − ξ′| ≤ 1,
then ξ′ ∈ BR′+1; thus the convolution is well-defined on RN ×BR′ as long as φi,n ∈ L1(BR′+1,Ω).

The function ϕk
i,n belongs to C1

b (RN × BR′ , L
∞(Ω)), where C1

b denotes the space of C1 bounded
functions with bounded derivatives. Moreover, it is easily checked that ϕk

i,n is stationary, and ϕk
i,n(·, ω)

converges towards ϕi,n(ω) in L1
loc(RN

y , L
1(BR′)), almost surely in ω. And if K is any compact set in RN ,

then there exists a compact set K ′ such that K ⊂ K ′ and almost surely in ω,

||ϕk
i,n(·, ω)− ϕi,n(·, ω)||L1(K×BR′ )

≤ 2||ϕi,n(·, ω)||L1(K′×BR′ )
.

Since ||ϕi,n(·, ω)||L1(K′×BR′ )
belongs to L1(Ω), using Lebesgue’s dominated convergence theorem, we

deduce that ϕk
i,n converges towards ϕi,n in L1(K ×BR′ ×Ω), for every compact set K ⊂ RN . Thus φk

i,n

converges towards φi,n in L1(BR′ × Ω) as k → ∞, due to the invariance of the measure P with respect
to the transformation group τy.
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We set

F̃n,k(x, ξ, ω) :=
Nn∑
i=1

1Ai,n ∗x ρk(x) φk
i,n(ξ, ω).

Then F̃n,k converges towards F̃n as k →∞ in L1(BR × BR′ × Ω). Thus there exists an integer kn such
that

||F̃n,kn
− F̃n||L1(BR×BR′×Ω) ≤

1
n
.

Set Fn := F̃n,kn . Then Fn converges towards F0 in L1 as n→∞, and thus the lemma is true.

Proof of Lemma 3.3. We first prove the lemma when g0 ∈ C1(RN
x ×RN

y ×RN
ξ , L

∞(Ω)). In that case, let
us recall that

gε(t, x, ξ, ω) = g0

(
εY

(
t

ε
,
x

ε
, ξ, ω

)
, Y

(
t

ε
,
x

ε
, ξ, ω

)
,Ξ
(
t

ε
,
x

ε
, ξ, ω

)
, ω

)
= g0

(
εY

(
t

ε
, 0, ξ, τ x

ε
ω

)
+ x, Y

(
t

ε
, 0, ξ, τ x

ε
ω

)
,Ξ
(
t

ε
, 0, ξ, τ x

ε
ω

)
, τ x

ε
ω

)
= G0

(
εY

(
t

ε
, 0, ξ, τ x

ε
ω

)
+ x, T t

ε

(
ξ, τ x

ε
ω
))

,

where G0(z, ξ, ω) := g0(z, 0, ξ, ω) for all (z, ξ, ω) ∈ RN ×RN ×Ω, and the semi-group (Tt)t≥0 was defined
in section 2 (see lemma 2.1). Moreover, since

1
2
|Ξ(t, y, ξ, ω)|2 + u (Y (t, y, ξ, ω)) =

1
2
|ξ|2 + u(y, ω)

we have
|Ξ(t, y, ξ, ω)| ≤

√
|ξ|2 + 2u(y, ω) ≤

√
|ξ|2 + 2umax

and almost surely in ω, ∣∣∣∣εY ( tε , 0, ξ, ω
)∣∣∣∣ ≤ t

√
|ξ|2 + 2umax.

Additionnally, we have, for all R′ > 0, for almost every ξ ∈ RN and almost surely in ω,

1|ξ|≤R′ ≤ 1H(ξ,ω)≤ 1
2 R′2+umax

.

(Remember that H(ξ, ω) = 1
2 |ξ|

2 + u(0, ω)). Thus, setting cR′ := 1
2R

′2 + umax, we have

E

[∫
x∈BR, ξ∈BR′

|gε(t, x, ξ, ω)| dx dξ

]

=
∫

x∈BR, ξ∈BR′

E

[∣∣∣∣G0

(
εY

(
t

ε
, 0, ξ, τ x

ε
ω

)
+ x, T t

ε

(
ξ, τ x

ε
ω
))∣∣∣∣] dx dξ

=
∫

x∈BR, ξ∈BR′

E

[∣∣∣∣G0

(
εY

(
t

ε
, 0, ξ, ω

)
+ x, T t

ε
(ξ, ω)

)∣∣∣∣] dx dξ
= E

[∫
ξ∈BR′

(∫
x∈BR

∣∣∣∣G0

(
εY

(
t

ε
, 0, ξ, ω

)
+ x, T t

ε
(ξ, ω)

)∣∣∣∣ dx) dξ

]

≤ E

[∫
ξ∈BR′

(∫
|z|≤R+T

√
R′2+2umax

∣∣∣G0

(
z, T t

ε
(ξ, ω)

)∣∣∣ dz) dξ

]

≤
∫
|z|≤R+T

√
R′2+2umax

∫
RN×Ω

∣∣∣G0

(
z, T t

ε
(ξ, ω)

)∣∣∣ dµcR′ (ξ, ω) dz

=
∫
|z|≤R+T

√
R′2+2umax

∫
RN×Ω

|G0 (z, ξ, ω)| dµcR′ (ξ, ω) dz

= ||G0||L1(CR,T,R′×RN
ξ ×Ω,dx dµc

R′
(ξ,ω)).
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Now, if g0 is an arbitrary admissible data in L1
loc(RN

x ×RN
y ×RN

ξ , L
∞(Ω)), we choose a sequence Gn

approachingG0 as in lemma 3.2 (R and R′ are fixed). Then inequality (11) is true for gε
n for all n ∈ N , and

for gε
n−gε

m for all n,m ∈ N . Thus the sequence gε
n is a Cauchy sequence in L∞loc((0,∞), L1(BR×BR′×Ω)).

Thus it converges strongly towards a solution of the transport equation (1). Thanks to a uniqueness
result for the transport equation (1), the limit of the sequence gε

n as n → ∞ is gε. There only remains
to pass to the limit as n→∞ in the inequality (11) written for gε

n and Gn
0 .

The proof of inequalities (12) and (13) go along the same lines.

4 The integrable case
In this section, we treat independently the periodic and the stationary ergodic case. Indeed, some results
of the periodic case are no longer true in the stationary ergodic setting, and the results which do remain
valid are not proved with the same tools.

Let us make precise what we mean about “integrable case” : in the periodic case, we take a function
u(y) which has the form

u(y) =
N∑

i=1

ui(yi), (14)

where each function ui is periodic with period 1 (1 ≤ i ≤ N). The Hamiltonian H(y, ξ) can be written

H(y, ξ) =
1
2
|ξ|2 + u(y) =

N∑
i=1

Hi(yi, ξi)

where Hi(yi, ξi) = 1
2 |ξi|

2 + ui(yi) (1 ≤ i ≤ N). And the Hamiltonian system (5) becomes Ẏi = −Ξi,

Ξ̇i = u′i(Yi),
Yi(t = 0) = yi, Ξi(t = 0) = ξi.

(15)

Thus it is enough to investigate the behavior of each one-dimensional Hamiltonian system (15) individ-
ually, and for most calculations, we can assume without loss of generality that N = 1, and we drop all
indices i. However, for the calculation of the projection P, a more thorough discussion will be needed,
and we will come back to the case where N > 1 in the corresponding paragraph.

In the stationary ergodic setting, expression (14) can be transposed in the following way : assume
that Ω = ΠN

i=1Ωi, where each Ωi is a probability space, and assume that for 1 ≤ i ≤ N , an ergodic group
transformation, denoted by (τi,y)y∈R, acts on each Ωi.

Then for ω = (ω1, · · · , ωN ) ∈ Ω, and y = (y1, · · · , yN ) ∈ RN , we set τyω := (τ1,y1ω1, · · · , τN,yN
ωN ).

And we assume that the function u can be written

u(y, ω) =
N∑

i=1

Ui (τi,yiωi) ,

where Ui ∈ L∞(Ωi) for all 1 ≤ i ≤ N . The same remarks as in the periodic case can be made, and thus
we will only consider the case N = 1 ; note that in the stationary ergodic case, we are unable to compute
the projection P when N > 1.

4.1 Periodic setting
The goal of this subsection is to give another proof of the results of K. Hamdache and E. Frénod in [10],
based on the study of the system Ẏ = −Ξ,

Ξ̇ = u′(Y ),
Y (t = 0) = y, Ξ = ξ, y ∈ R, ξ ∈ R.

(16)
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The Hamiltonian H(y, ξ) = 1
2 |ξ|

2 + u(y) is constant along the trajectories of the system (16), so that

1
2
|Ξ(t, y, ξ)|2 + u(Y (t, y, ξ)) = H(y, ξ).

We now fix y, ξ ∈ RN . Without any loss of generality, we assume y ∈ [− 1
2 ,

1
2 ), and we set E := H(y, ξ).

The above equation describes the movement of a single particle in a periodic potential u, with 0 ≤ u ≤
umax. It is well-known that there are two kinds of behavior, depending on the value of the energy E : if
E < umax, the particle is “trapped” in a well of potential around y, and Y (t) remains bounded as t→∞.
In that case, the trajectories in the phase space are closed curves. If E > umax, the trajectory of the
particle is unconstrained and |Y (t)| → ∞ as t→∞. We study more precisely these two cases and their
consequences on the expression of the projection P in the following subsections ; we refer for instance to
[3] for further calculations and results about Hamiltonian dynamics and ordinary differential equations
in general.

4.1.1 Expression of ξ](y, ξ)

We begin with the case when H(y, ξ) < umax. In that case, u(y) ≤ H(y, ξ) < umax. By continuity of
the potential u, there exists y− < y and y+ > y such that H(y, ξ) < u(y±) < umax, and the periodicity
of u allows us to choose y± such that |y+ − y−| < 1. Then y− < Y (t, y, ξ) < y+ for all t ≥ 0. Indeed,
assume that there exists t > 0 such that Y (t, y, ξ) ≥ y+ > y = Y (t = 0, y, ξ). Since the trajectory Y is
continuous in time, there exists 0 < t0 ≤ t such that Y (t = t0, y, ξ) = y+, which is absurd since

H(Y (t0, y, ξ),Ξ(t0, y, ξ)) = H(y, ξ) ≥ u(Y (t0, y, ξ)) = u(y+) > H(y, ξ).

Thus Y (t, y, ξ) is bounded. Since

ξ](y, ξ) = lim
T→∞

1
T

∫ T

0

Ξ(t, y, ξ) dt = − lim
T→∞

1
T

∫ T

0

Ẏ (t, y, ξ) dt = lim
T→∞

y − Y (T, y, ξ)
T

we deduce that ξ](y, ξ) = 0 for all y, ξ such that H(y, ξ) < umax.

We now study the case H(y, ξ) > umax. Since

|Ẏ (t, y, ξ)|2 = 2 (H(y, ξ)− u(Y (t, y, ξ))) ≥ 2(H(y, ξ)− umax) > 0,

we deduce that Ẏ does not vanish for t ≥ 0. Consequently,

Ξ(t, y, ξ) = −Ẏ (t, y, ξ) = sgn(ξ)
√

2 (H(y, ξ)− u(Y (t, y, ξ))),

and since |Y (t, y, ξ) − y| ≥
√

2 (H(y, ξ)− umax)t, |Y (t)| → ∞ as t → ∞. We immediately deduce that
Ξ(t, y, ξ) is periodic in time: indeed, there exists t0 > 0 such that

Y (t0, y, ξ) = y − sgn(ξ).

And

Ξ(t = t0, y, ξ) = sgn(ξ)
√

2 (H(y, ξ)− u(Y (t0, y, ξ)))

= sgn(ξ)
√

2 (H(y, ξ)− u(y))
= ξ = Ξ(t = 0, y, ξ),

so that for s ≥ 0,

Y (t0 + s, y, ξ) = Y (s, y, ξ)− sgn(ξ),
Ξ(t0 + s, y, ξ) = Ξ(s, y, ξ),

and Ξ is periodic with period t0.
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Consequently,

ξ](y, ξ) = lim
T→∞

1
T

∫ T

0

Ξ(t, y, ξ) dt =
1
t0

∫ t0

0

Ξ(t, y, ξ) dt.

But ∫ t0

0

Ξ(t, y, ξ) dt = −
∫ t0

0

Ẏ (t, y, ξ) dt

= − (Y (t0, y, ξ)− y)
= sgn(ξ).

Thus we only have to compute t0. With this aim in view, we use the change of variables s = Y (t), with
Jacobian ds = Ẏ dt (recall that Ẏ (t, y, ξ) = −sgn(ξ)

√
2 (H(y, ξ)− u(Y (t, y, ξ))) ), in the formula

t0 =
∫ t0

0

dt

=
∫ Y (t0)

Y (t=0)

1
−sgn(ξ)

√
2 (H(y, ξ)− u(s))

ds

= −sgn(ξ)
∫ y−sgn(ξ)

y

1√
2 (H(y, ξ)− u(s))

ds

=
∫ 1

0

1√
2 (H(y, ξ)− u(s))

ds

Eventually, we deduce
ξ](y, ξ) = sgn(ξ)ϕ(H(y, ξ)),

where
ϕ(E) =

√
21E>umax

1〈
1√

(E−u(s))

〉
We close this paragraph with a calculation which allows us to express ξ] in terms of the homogenized

Hamiltonian H̄. The result we will obtain will be justified in more abstract and theoretical terms in the
last subsection, using arguments similar to those of the theory of Aubry-Mather.

First, let us recall the expression of the homogenized Hamiltonian H̄ (see [13]) : we have

H(y, ξ) =
1
2
|ξ|2 + u(y), with inf u = 0, supu = umax,

and thus

H̄(p) = umax +
1
2

 0 if p <
〈√

2(umax − u)
〉

λ if |p| ≥
〈√

2(umax − u)
〉
, where |p| =

〈√
2(umax − u) + λ

〉
.

In other words, setting

θ :
[0,∞) → [0,∞)
λ 7→

〈√
2(umax − u) + λ

〉
we have

H̄(p) = umax +
1
2
1|p|≥θ(0)θ

−1(|p|).

Hence,

H̄ ′(p) = sgn(p)
1
2
1|p|>θ(0)

1
θ′ (θ−1(|p|))

;
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and

θ′(λ) =
1
2

〈
1√

2(umax − u) + λ

〉
,

θ−1(|p|) = 2
(
H̄(p)− umax

)
∀|p| ≥ θ(0),

|p| > θ(0) ⇐⇒ H̄(p) > umax ∀p.

Gathering all the terms, we are led to

H̄ ′(p) = sgn(p)
√

21H̄(p)>umax

1〈
1√

H̄(p)−u

〉
= sgn(p)ϕ

(
H̄(p)

)
Thus, the final expression is

ξ](y, ξ) = H̄ ′(p),

where p is such that
H̄(p) = H(y, ξ) ∨ umax, sgn(p) = sgn(ξ).

4.1.2 Expression of the projection P

We also mention here how to find a general expression of the projection P in the special case N = 1,
and we explain how to generalize this expression in some particular cases when N > 1. Recall that if
f = f(y, ξ) ∈ L1

loc(RN
y × RN

ξ ) is periodic in y, then

P(f)(y, ξ) = lim
T→∞

1
T

∫ T

0

f(Y (t, y, ξ),Ξ(t, y, ξ)) dt

and the limit holds almost everywhere and in L1([0, 1)× RN ,mc), with dmc(y, ξ) = 1H(y,ξ)≤c dy dξ.
We begin with the case H(y, ξ) > umax. We have seen in the previous paragraph that there exists

t0 > 0, which depends only on H(y, ξ) such that for all t > 0, for all k ∈ N

Y (t+ k t0, y, ξ) = Y (t, y, ξ)− k sgn(ξ), Ξ(t+ k t0, y, ξ) = Ξ(t, y, ξ).

Thus f(Y (t),Ξ(t)) is periodic in time with period t0, and

P(f)(y, ξ) =
1
t0

∫ t0

0

f(Y (t, y, ξ),Ξ(t, y, ξ)) dt.

We use once again the change of variables s = Y (t), so that∫ t0

0

f(Y (t, y, ξ),Ξ(t, y, ξ)) dt

=
∫ y−sgn(ξ)

y

f
(
s, sgn(ξ)

√
2 (H(y, ξ)− u(s))

) 1
−sgn(ξ)

√
2 (H(y, ξ)− u(s))

ds

=

〈
f
(
·, sgn(ξ)

√
2 (H(y, ξ)− u(·))

) 1√
2 (H(y, ξ)− u(·))

〉
.

And eventually,
P(f)(y, ξ) = f̄(sgn(ξ),H(y, ξ)) (17)

with

f̄(η, E) :=

〈
f
(
·, η
√

2 (E − u(·))
)

1√
(E−u(·))

〉
〈

1√
(E−u)

〉 η = ±1, E > umax.
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We now focus on the case 0 < E < umax. In order to simplify the analysis we assume that E /∈
{u(y) ;u has a local extremum at y} (this set is finite or countable), and that

∀y ∈ R, u′(y) = 0 ⇒ u has a local extremum at y.

In that case, it can be easily proved that Y (t, y, ξ) is periodic in t; this follows directly from the fact
that the trajectory in the phase space is closed (see [3]). Indeed, pushing a little further the analysis of
the previous paragraph, we construct z± such that

|z+ − z−| < 2π, z− < z+,

u(z±) = E ,
z− ≤ y ≤ z+,

u(z) < E ∀z ∈ (z−, z+).

Then the particle starting from y with initial speed −ξ reaches either z+ or z− in finite time; the speed
of the particle is 0 at that moment since

|Ẏ |2 = 2(E − u(Y )),

but its acceleration is −u′(z±) 6= 0, so the particle turns around and goes back in the reverse direction.
It then reaches the other extremity of the interval (z−, z+) in finite time, and the same phenomena
occurs. Hence after a finite time t0, the particle is back at its starting point y with the same speed −ξ.
Consequently, the movement of the particle is periodic in time with period t0. Thus, we have

P(f)(y, ξ) =
1
t0

∫ t1+t0

t1

f(Y (t, y, ξ),Ξ(t, y, ξ)) dt,

where t1 ≥ 0 is arbitrary. It is convenient to choose for t1 the first time when the particle hits z−. In
that case, it is easily seen that t0 is twice the time it takes to the particle to go from z− to z+, so that

t0
2

=
∫ t1+t0/2

t1

dt =
∫ z+

z−

1√
2 (E − u(s))

ds =

〈
1u<E

1√
2 (E − u)

〉

and ∫ t1+
t0
2

t1

f(Y (t, y, ξ),Ξ(t, y, ξ)) dt =

〈
1u<Ef(s,−

√
2 (E − u))

1√
2 (E − u)

〉
,

∫ t1+t0

t1+
t0
2

f(Y (t, y, ξ),Ξ(t, y, ξ)) dt =

〈
1u<Ef(s,

√
2 (E − u))

1√
2 (E − u)

〉
.

Gathering all the terms, we are led to

P(f)(y, ξ) =

〈
1u<E

[
f
(
·,
√

2 (E − u)
)

+ f
(
·,−
√

2 (E − u)
)]

1√
(E−u)

〉
2
〈
1u<E

1√
(E−u)

〉 (18)

Expressions (17) and (18) are compatible with the ones in [10].

Let us now come back to the case whenN > 1, and take a function ϕ(y, ξ) = ϕ1(y1, ξ1) · · ·ϕN (yN , ξN ),
where each ϕi is periodic with period 1. We want to compute the limit

1
T

∫ T

0

ϕ1(Y1(t, y1, ξ1),Ξ1(t, y1, ξ1)) · · ·ϕN (YN (t, yN , ξN ),ΞN (t, yN , ξN )) dt.
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In general, knowing the behavior of each trajectory (Yi,Ξi) independently is not enough to compute such
a product. However, here, we recall that each function ϕi(Yi(t, yi, ξi),Ξi(t, yi, ξi)) (1 ≤ i ≤ N) is periodic
in time. The period depends only on Hi(yi, ξi) and on the function ui. More precisely, setting

Ti(E) :=
√

2
∫ 1

0

1ui(z)<E
1√

E − ui(z)
dz ∀E > 0, E 6= umax,

ϕi(Yi(t, yi, ξi),Ξi(t, yi, ξi)) is periodic in time with period Ti(Hi(yi, ξi)).
We can thus use the following result :

Lemma 4.1. Let f1, · · · , fN ∈ L∞(R) such that fi is periodic with period θi, and set 〈fi〉 = 1
θi

∫ θi

0
fi.

Assume that
k1

θ1
+ · · ·+ kN

θN
6= 0 ∀(k1, · · · , kN ) ∈ ZN \ {0}. (19)

Then as T →∞,
1
T

∫ T

0

f1(t) · · · fN (t) dt→ 〈f1〉 · · · 〈fN 〉 .

Sketch of proof. By density, it is enough to prove the lemma for f1, ·, fN ∈ C∞(R). Write fi as a Fourier
series (the series converges thanks to the regularity assumption), and use the fact that for all α 6= 0,

1
T

∫ T

0

eiαt dt→ 0 as T →∞.

In the present setting, we deduce the following result :

Proposition 4.1. Let ϕ : (y, ξ) 7→ ϕ1(y1, ξ1) · · ·ϕN (yN , ξN ), where ϕi ∈ L∞per(Ry × Rξ).
Let (y, ξ) ∈ [0, 1)N × RN , and let θi = θi(yi, ξi) = Ti(Hi(yi, ξi)) for 1 ≤ i ≤ N . Assume that

(θ1, · · · , θN ) satisfy condition (19). Then

P(ϕ)(y, ξ) = P1(ϕ1)(y1, ξ1) · · ·PN (ϕN )(yN , ξN ) (20)

where each Pi is the projection in dimension 1 with potential ui, given by expressions (17) and (18).

In particular, when the set

{(y, ξ) ∈ [0, 1]N × RN ; (θ1(y1, ξ1), · · · , θN (yN , ξN )) satisfy condition (19)}

has zero Lebesgue measure, equality (20) holds almost everywhere. It can then be generalized to arbitrary
functions ϕ ∈ L∞per(RN ×RN ) (always by linearity and density). The correct expression of the projection
P is then

P = P1 ◦ P2 ◦ · · · ◦ PN , (21)

where each projection Pi acts on the variables (yi, ξi) only. Notice that all projections Pi thus commute
with one another; hence the order in which they are taken is unimportant.

We wish to emphasize that on the open set {(y, ξ) ∈ R2N ,∀i ∈ {1, · · · , N} Hi(yi, ξi) > maxui}, the
expression (21) is true. Indeed, for k ∈ ZN \ {0}, set

Ak := {t ∈ RN ; k1t1 + · · ·+ kN tN = 0}.

Then Ak is a hyperplane, and we have{
(y, ξ), (y, ξ) ∈ R2N ,Hi(yi, ξi) > maxui ∀i and (θ1(y1, ξ1), · · · , θN (yN , ξN )) satisfy (19)

}
=

⋃
k∈ZN\{0}

{
(y, ξ), (y, ξ) ∈ R2N ,Hi(yi, ξi) > maxui ∀i and (θ1(y1, ξ1), · · · , θN (yN , ξN )) ∈ Ak

}
.
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Hence it suffices to prove that if A is any hyperplane in RN ,∣∣{(y, ξ), (y, ξ) ∈ R2N ,Hi(yi, ξi) > maxui ∀i and (θ1(y1, ξ1), · · · , θN (yN , ξN )) ∈ A
}∣∣ = 0.

Without any loss of generality, assume that

A = {t ∈ RN , a1t1 + · · ·+ aN tN = 0}, with a1 6= 0.

Then, using the fact that T1 is strictly nonincreasing on (maxui,+∞), we can find a open set C ⊂
Y × RN−1 and a continuous function χ : C → R such that{

(y, ξ), (y, ξ) ∈ R2N ,Hi(yi, ξi) > maxui ∀i and (θ1(y1, ξ1), · · · , θN (yN , ξN )) ∈ A
}

= {(y, χ(y, ξ′), ξ′), (y, ξ′) ∈ C} ∪ {(y,−χ(y, ξ′), ξ′), (y, ξ′) ∈ C} .

Above, the set C ⊂ Y × RN−1 is defined by

C :=
{

(y, ξ′) ∈ Y × RN−1,Hi(yi, ξi) > maxui, i ≥ 2 and
−1
a1

(a2θ2(y2, ξ2) + · · ·+ aNθN (yN , ξn)) > 0
}
,

and the function χ is defined on C by

χ(y1, · · · , yN , ξ2, · · · , ξN ) =

√
2
[
T−1

1

(
−1
a1

(a2θ2(y2, ξ2) + · · ·+ aNθN (yN , ξn))
)
− u1(y1)

]
,

where T−1
1 : (0,∞) → (maxui,+∞) is the inverse function of T1.

Since χ is a continuous function, the set

{(y, χ(y, ξ′), ξ′), (y, ξ′) ∈ C}

has zero Lebesgue measure in R2N (it is the graph of a continuous curve).
As a consequence, the set

{(y, ξ) ∈ R2N ,Hi(yi, ξi) > maxui ∀i and (θ1(y1, ξ1), · · · , θN (yN , ξN )) satisfy condition (19)}

has zero Lebesgue measure.
However, let us mention here that in general, condition (19) cannot be relaxed : indeed, assume for

instance that ui = uj := u for i 6= j and assume that the function u is such that

∃y0 > 0, u(y) = y2 for |y| < y0,

and u(y) > y2
0 if y ∈ [− 1

2 ,
1
2 ] \ [−y0, y0].

Then if |E| ≤ √
y0, we have

T (E) =
∫ √

E

−
√
E

1√
E − y2

dy = 2
∫ 1

0

1√
1− z2

dz =: T0

Thus, if Hi(yi, ξi) ≤
√
y0, then (Yi,Ξi)(t, yi, ξi) is periodic with period T0. Notice that T0 does not

depend on the energy Hi(yi, ξi)
In that case, the function ϕ(Y (t),Ξ(t)) is also periodic with period T0. Thus we have to compute the

limit of
1
T

∫ T

0

f1(t) · · · fN (t) dt

as T →∞, where the fi are arbitrary functions with period T0. It is then easily proved that

1
T

∫ T

0

f1(t) · · · fN (t) dt→
∑

k ∈ ZN ,
k1 + · · ·+ kN = 0

a1,k1 · · · aN,kN
(22)
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where

aj,l =
1
T0

∫ T0

0

fj(t)e
− 2ilπt

T0 dt, 1 ≤ j ≤ N, l ∈ Z.

In general, the right-hand side of (22) differs from a1,0 · · · aN,0, and thus

P 6= P1 ◦ · · · ◦ PN

for (y, ξ) in a neighbourhood of the origin.
In this regard, let us mention that we believe that there is a slight misprint in [10] concerning the

expression of the projection P when N = 2 and for low energies. Indeed, when E1 := H1(y1, ξ1) < maxu1

and E2 := H(y2, ξ2) < u2, it is stated in [10] that

P(f)(y, ξ) =
1
2

∫ {
f(z1, z2, sgn(ξ1)

√
2(E1 − u1(z1), sgn(ξ2)

√
2(E2 − u2(z2)

+f(z1, z2,−sgn(ξ1)
√

2(E1 − u1(z1),−sgn(ξ2)
√

2(E2 − u2(z2)
}
dν(z1, z2).

where
dν(z1, z2) =

1
C

1u1(z1)<E1

1√
E1 − u1(z1)

1u2(z2)<E2

1√
E2 − ui(z2)

dz1dz2,

and the constant C is such that ν is a probability measure on [0, 1]2.
When θ1(y1, ξ1), θ2(y2, ξ2) satisfy (19), then P(f)(y, ξ) = P1 ◦ P2(f)(y, ξ), and thus in that case, the

correct expression is rather

P(f)(y, ξ) =
1
4

∫ {
f(z1, z2, sgn(ξ1)

√
2(E1 − u1(z1), sgn(ξ2)

√
2(E2 − u2(z2)

+f(z1, z2, sgn(ξ1)
√

2(E1 − u1(z1),−sgn(ξ2)
√

2(E2 − u2(z2)

+f(z1, z2,−sgn(ξ1)
√

2(E1 − u1(z1), sgn(ξ2)
√

2(E2 − u2(z2)

+f(z1, z2,−sgn(ξ1)
√

2(E1 − u1(z1),−sgn(ξ2)
√

2(E2 − u2(z2)
}
dν(z1, z2).

Let us give an explicit example where θ1(y1, ξ1), θ2(y2, ξ2) satisfy (19) and E1 < maxu1, E2 < maxu2.
Assume that for i = 1, 2, there exists ai, y0

i such that

ui(yi) = ai |yi|2 ∀|yi| < y0
i , and

(
a1

a2

)2

/∈ Q,

and ui(yi) > ai |y0
i |2 if y0

i < |yi| < 1/2. Indeed, in that case, Ti(Ei) = T0/
√
ai if Ei < ai |y0

i |2, and
the condition a2

1/a
2
2 /∈ Q ensures that θ1(y1, ξ1), θ2(y2, ξ2) satisfy (19) for y, ξ in a neighbourhood of the

origin.
Thus the expression of [10] is false in that case. In the general case, it is unclear whether a gen-

eral expression of this kind can be given, considering the discussion around the hypothesis (19) above.
Nonetheless, we emphasize that this mistake is of no consequence on the rest of the article [10], and that
all the other expressions are compatible with ours.

4.2 Stationary ergodic setting
In the stationary ergodic setting, some of the expressions or properties above are no longer true. The
most significant difference occurs when the energy H(y, ξ) < umax; indeed, in that case the particle is
not necessarily trapped, depending on the profile of the potential u. Hence, in the rest of the subsection,
we focus on the case H(y, ξ) > umax. In that case, the movement of the particle is unbounded and has
many similarities with the periodic case. In particular, the particle sees “all the potential” during its
evolution, and this will be fundamental in the use of the ergodic theorem.
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4.2.1 Expression of ξ](y, ξ, ω)

This paragraph is devoted to the proof of proposition 1.3 in the stationary ergodic setting.
We wish to point out that the expressions in the periodic and in the stationary ergodic case when

H(y, ξ, ω) > umax are exactly the same (compare proposition 1.3 and the end of paragraph 4.1.1). This
expression, and more precisely, the equality ξ] = H̄ ′(P ) for some P , is in fact strongly linked to Aubry-
Mather theory. Indeed,

ξ](y, ξ, ω) = lim
T→∞

1
T

∫ T

0

Ξ(t, y, ξ, ω) dt = − lim
T→∞

Y (T, y, ξ, ω)− y

T
,

and ξ](y, ξ, ω) is thus (up to a multiplication by −1) the rotation number associated to the Hamiltonian
flow starting at (y, ξ). The interested reader should compare our proposition 1.3 to lemma 2.8 in [8] or
theorem 4.1 in [9], and our proof to the ones in these articles, and also to the proofs in [15]. We refer
to [8, 9, 15] for further references to Aubry-Mather theory and its applications to partial differential
equations.

Proof of proposition 1.3. In all the proof, we fix y, ξ, ω such that H(y, ξ, ω) > umax, and we set P =
P (y, ξ, ω).

The proof is in two steps : first, we prove that

P(L)(y, ξ, ω) ≥ L̄
(
ξ](y, ξ, ω)

)
, (23)

which is equivalent to
P(L)(y, ξ, ω) ≥ Qξ](y, ξ, ω)− H̄(Q) ∀Q ∈ R,

and then we exhibit a particular Q ∈ R such that equality holds in the previous inequality.
The proof of (23) relies on the following definition of the homogenized Lagrangian (see [18])

∀q ∈ R, L̄(q) = lim
T→∞

1
T

inf

{∫ T

0

L(γ(s),−γ̇(s), ω) ds, γ ∈W 1,∞((0, T )× RN ), γ(0) = 0, γ(T ) = Tq

}
.

The clue of inequality (23) lies in the following remark : since Y (T )/T → −ξ] as T →∞ and L, we could
“almost” choose γ = Y in the above definition in order to obtain an upper-bound on L̄(−ξ]) = L̄(ξ]).
Thus we define a function γ which coincides with Y on a large part of the interval (0, T ).

Let T > 0 arbitrary, and let λ ∈ (0, 1) be fixed. Define γ by

γ(s) = Y (s, y, ξ, ω) for 1 ≤ s ≤ λT,

γ(0) = 0, γ(T ) = −Tξ](y, ξ, ω),
γ affine between 0 and 1 and between λT and T .

Then as T →∞,
1
T

∫ 1

0

L(γ(s),−γ̇(s), ω) ds→ 0,

and
1
T

∫ λT

1

L(γ(s),−γ̇(s), ω) ds→ λP(L)(y, ξ, ω).

There remains to evaluate the contribution of the interval (λT, T ). On this interval,

γ̇(s) =
1

T − λT

(
−Tξ](y, ξ, ω)− Y (λT )

)
= − 1

1− λ
ξ](y, ξ, ω)− Y (λT )

λT

λ

1− λ
.

Moreover, for all (y′, ξ′, ω′) ∈ RN × RN × Ω,

L(y′, ξ′, ω′) =
1
2
|ξ′|2 − u(y′, ω) ≤ 1

2
|ξ′|2.
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Thus ∫ T

λT

L(γ(s),−γ̇(s), ω) ds ≤ T − λT

2

∣∣∣∣− 1
1− λ

ξ](y, ξ, ω)− Y (λT )
λT

λ

1− λ

∣∣∣∣2 .
We now pass to the limit as T →∞, with λ ∈ (0, 1) fixed; recall that as τ →∞,

Y (τ, y, ξ, ω)
τ

= −1
τ

(∫ τ

0

Ξ(t, y, ξ, ω) dt− y

)
→ −ξ](y, ξ, ω).

Thus, for all λ ∈ (0, 1),

L̄
(
ξ](y, ξ, ω)

)
≤ λP(L)(y, ξ, ω) +

1− λ

2

∣∣∣∣− 1
1− λ

ξ](y, ξ, ω) +
λ

1− λ
ξ](y, ξ, ω)

∣∣∣∣2
≤ λP(L)(y, ξ, ω) + (1− λ)

|ξ](y, ξ, ω)|2

2
.

Now, letting λ→ 1, we obtain inequality (23).
In order to prove the proposition, we have to find a special Q0 ∈ R such that

P(L)(y, ξ, ω) = Q0ξ
](y, ξ, ω)− H̄(Q0).

This will entail that

P(L)(y, ξ, ω) = sup
Q∈R

(
Qξ](y, ξ, ω)− H̄(Q)

)
= L̄

(
ξ](y, ξ, ω)

)
,

and the sup is obtained for ξ](y, ξ, ω) = H̄ ′(Q0).
The proof of the equality relies on the use of the cell equation for Q = P = P (y, ξ, ω). Indeed, notice

that
v(y, ω) := sgn(P )

∫ y

0

√
2(H̄(P )− u(z, ω)) dz − Py

is a viscosity solution of
H(y, P +∇yv, ω) = H̄(P ),

and as y →∞
1
y

∫ y

0

√
2(H̄(P )− u(z, ω)) dz → E

[√
2(H̄(P )− U)

]
,

where U(ω) := u(0, ω) for all ω ∈ Ω.
By definition of H̄,

E

[√
2(H̄(P )− U)

]
= |P |;

consequently,
1

1 + |y|

(
sgn(P )

∫ y

0

√
2(H̄(P )− u(z, ω)) dz − Py

)
→ 0 (24)

as y →∞, a.s. in ω. Thus v is a corrector, and v ∈ L∞(Ω; C1(RN )). Thus the method of characteristics,
for instance, can be used to prove that for any couple (y′, ξ′) = (y′, P +∇yv(y′, ω)), we have

v(y′, ω) = v(Y (T, y′, ξ′, ω)) +
∫ T

0

L(Y (t, y′, ξ′, ω),Ξ(t, y′, ξ′, ω), ω) dt+ P [Y (T, y′, ξ′, ω)− y′] + H̄(P )T.

(25)
Before passing to the limit in the above equality, let us prove that we can take (y′, ξ′) = (y, ξ). First,
notice that

∇yv(y′, ω) = sgn(P )
√

2(H̄(P )− u(y′, ω))− P,

and thus sgn (P +∇yv(y′, ω)) = sgn(ξ′) = sgn(P ) = sgn(ξ). Hence, take y′ = y. Then |ξ|2 = |ξ′|2
because H(y, ξ) = H̄(P ) = H(y, ξ′) by definition of ξ′. Thus ξ = ξ′, and we can take (y′, ξ′) = (y, ξ) in
(25).
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Now, we multiply (25) by 1/T , and pass to the limit as T →∞. Since

1
2
|Ẏ (t, y, ξ, ω)| = H(y, ξ, ω)− u ≥ H(y, ξ, ω)− umax > 0 ∀t > 0,

there exist constants α, β > 0 depending only on H(y, ξ, ω) and umax, such that

0 < α ≤
∣∣∣∣Y (T, y, ξ, ω)− y

T

∣∣∣∣ ≤ β ∀T > 0.

Consequently, Y (T ) →∞ as T →∞ and

v(y)− v(Y (T, y, ξ, ω))
T

=
v(y)− v(Y (T, y, ξ, ω))
Y (T, y, ξ, ω)− y

Y (T, y, ξ, ω)− y

T
→ 0 as T →∞.

(remember (24)).
Hence, in the limit we infer

P(L)(y, ξ, ω) = Pξ](y, ξ, ω)− H̄(P ),

and the proposition follows.

Remark 4.1. Notice that the proof of inequality (23) does not use the fact that the system is integrable,
or that H(y, ξ, ω) > umax. Thus (23) remains true for small energies, or when the system (Y,Ξ) is not
integrable.

4.2.2 Expression of the projection P

The same method as in the periodic case can be used in order to find the expression of the projection P
when H(y, ξ, ω) =: E > umax; indeed, in that case, remember that

P(f)(y, ξ, ω) = lim
T→∞

1
T

∫ T

0

f (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) dt

and we can use the change of variables

dt =
1
Ẏ
dY =

1
−sgn(ξ)

√
2(E − u(Y, ω))

dY

in order to obtain ∫ T

0

f (Y (t, y, ξ, ω),Ξ(t, y, ξ, ω), ω) dt

=
∫ Y (T,y,ξ,ω)

y

f
(
z, sgn(ξ)

√
2(E − u(z, ω)), ω

) 1
−sgn(ξ)

√
2(E − u(z, ω))

dz.

Since the group transformation (τx) is ergodic, and Y (T ) →∞ as T →∞, for all E > umax,

1
Y (T )− y

∫ Y (T,y,ξ,ω)

y

f
(
z, sgn(ξ)

√
2(E − u(z, ω)), ω

) 1
−sgn(ξ)

√
2(E − u(z, ω))

dz →

→ E

[
F
(
sgn(ξ)

√
2(E − u(0, ω)), ω

) 1
−sgn(ξ)

√
2(E − u(0, ω))

]
Thus, we obtain

P(f)(y, ξ, ω) = ξ](y, ξ, ω)f̄(sgn(ξ),H(y, ξ, ω)),

where

f̄(η, E) = E

[
F
(
η
√

2(E − u(0, ω)), ω
) 1
η
√

2(E − u(0, ω))

]
.
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