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Homogenization of nonlinear scalar conservation laws

ANNE-LAURE DALIBARD

Abstract

We study the limit as € — 0 of the entropy solutions of the equation 0,u® +div, [A (f, ue)] =0.
We prove that the sequence u® two-scale converges towards a function u(t, z,y), and u is the unique
solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar
conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables

are mixed. We also prove a strong convergence result in L .

1. Introduction

This article is concerned with the asymptotic behavior of the sequence u® € C([0,00), Li, .(RY)),

as the parameter ¢ vanishes, where u° is the entropy solution of the scalar conservation law

Ous(t, x) N9 T
L N _ - N
ot + — axz Al (5 , U (ta Qf)) 0 t> 0, reR s (1)

W (t = 0) = up (x g) . 2)

The functions A; = A;(y,v) (y € RY, v € R) are assumed to be Y-periodic, where Y =
IIY (0,T;) is the unit cell, and ug is also assumed to be periodic in its second variable.

Under regularity hypotheses on the flux, namely A € WpQéijC(RNH), and when the initial data
u®(t = 0) belongs to L*°, it is known that there exists a unique entropy solution u° of the above
system for all € > 0 given (see [4,16,17,26,27]). The study of the homogenization of such hyperbolic
scalar conservation laws has been investigated by several authors, see for instance [9,10,11], and
in the linear case [14,15]. In dimension one, there is also an equivalence with Hamilton-Jacobi
equations which allows to use the results of [18]. In general, the results obtained by these authors
can be summarized as follows: there exists a function u® = u°(¢, z, y) such that

u® —u’ (Lx, g) — 0 in L}.((0,00) x RY). (3)

The function u®(t,z,y) satisfies a microscopic equation, called cell problem, and an evolution
equation, which is a scalar conservation law in which the coefficients depend on the microscopic
variable y. In general, there is no “decoupling” of the macroscopic variables ¢, z, and the microscopic
variable y: the average of u’ with respect to the variable y is not the solution of an “average”
conservation law.

To our knowledge, there are no results as soon as the dimension is strictly greater than one
when the flux does not satisfy a structural condition of the type A(y,§) = a(y)g(€). Here, we
investigate the behavior of the family u® for arbitrary fluxes. We prove that (3) still holds, in a
sense which will be made clear later on, and the function 4" is a solution of a microscopic cell
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problem. Precisely, we prove that even though there is no simple evolution equation satisfied by
the function u° itself, the function

f(tvxvya€> = ]-E<u0

is the unique solution of a linear transport equation, with a source term which is a Lagrange mul-
tiplier accounting for the constraints on f. This statement is reminiscent of the kinetic formulation
for scalar conservation laws (see [19,20,22], the general presentation in [23], and [8] for the hetero-
geneous case); this is not surprising since our method of proof relies on the kinetic formulation for
equation (1). However, in general, it is unclear whether u" is the solution of a scalar conservation
law. Thus the kinetic formulation appears as the “correct” vision of the entropy solutions of (1), at
least as far as homogenization is concerned.

The rest of this introduction is devoted to the presentation of the main results. We begin with
the description of the asymptotic problem, and then we state the convergence results.

1.1. Description of the asymptotic evolution problem

We first introduce the asymptotic evolution problem, for which we state an existence and
uniqueness result; then we explain how this asymptotic problem can be understood formally.
In the following, we set, for (y,&) € RN*+L,

04A;
Qg (ya f) = aé-

an+1(y,€) = —div, A(y, §).

We set a(y, &) = (a1(y,€), - ,ani1(y,€)) € RNFL Notice that div, ¢a(y, &) = 0. These notations
were introduced in [8]. Throughout the paper, we assume that a € Wgéfﬁoc(Y x R)yN+L,

Before giving the definition of the limit system, let us recall the kinetic formulation for equation
(1), which may shed some light on the structure of the asymptotic evolution problem. Let u° be an
entropy solution of (1). Then there exists a non-negative measure m® € M*((0,00) x R¥*1) such

that f€ = 1¢oye(¢,0) is a solution of the transport equation

(y,€), 1<i<N,

0 +ai (£.€) 0o+ Tanr (£.€) 057 = g, (W
f€<t:0ama€) = 1§<u0(r7§)- (5)

In fact, this equation was derived in [8] for the function ¢°(¢, x,&) = x (&, u®(¢, x)), where x(&,u) =
locecu — luce<o, for u, & € R, and under the additional assumption an1(y,0) = 0 for all y € RY.
However, it is easily proved, using the identity f¢ = ¢ + 1¢<o, that f© satisfies (4), even when
an+1(y,0) does not vanish.

We now define the limit system, which is reminiscent of equation (4) :

Definition 1 Let f € L>=([0,00) x RY x Y xR), ug € L=¥(RY xY). We say that f is a generalized
kinetic solution of the limit problem, with initial data le.,, if there exists a distribution M €
D! ([0,00) x RN x Y x R) such that f and M satisfy the following properties:

per

1. Compact support in &: there exists a constant M > 0 such that

Supp M C [0,00) x RY x Y x [-M, M], (6)
f(t7xay>§):1 if§<_Ma (7)
ftx,y,8) =0 if &> M. (8)

2. Microscopic equation for f: there exists a non-negative measure m € M*((0,00) x RN x Y x R)
such that f is a solution in the sense of distributions of

divye(a(y, §)f(t 2,y,£)) = Oem, (9)
and Suppm C [0,00) x RN x Y x [-M, M].
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3. Evolution equation: the couple (f, M) is a solution in the sense of distributions of

N
Of +>_ ai(y,§)0s,f =M,
=1

f(t = O,I,y,i) = 1§<uo(x,y) = fO(xayag);

In other words, for any test function ¢ € Dper([0,00) x RV x YV x R),

o N
[ [ sty {&sqb(t,x,y,ﬁ) " Zai(y,f)%(b(t,x,y,ﬁ)} dt d dy d¢ =
0 RN XY xR i—1

= — (o, M>D’D, — / lecug(ay)@(t = 0,2,y,&) do dy d§.
RN XY xR

4. Conditions on f:

def <0 inD, (11)

0< f(t,xz,y,€) <1 almost everywhere. (12)
And for all compact set K C RV,
1 T

= 156 = ollsenswy s =0 (13)

5. Condition on M: define the set

G:={p e L5(Y xR), 9 > 0,and 3p € M,,(Y xR), 3C > 0,3a_ €R,
divy¢(ar)) = —0¢p, Supppu CY x [-C,C], p >0,
U(y,§) = a- if ¢ <=C}.

For o € D(R; x RY) such that ¢ >0 and o(t,x) =0 if t <0, consider the function
M*t,z so(t,x,y,E) = / / M(sz7y>£)90(t757xiz) ds dz
0 JRN

= [ [ .m0 (0l - 50— 2) + sy, 90 plt — 5,3 - 2) dsd.
0 JRN
Then M x4 ¢ belongs to C([0,00) x RN L2(Y x R)), and

V(t,z) €[0,00) xRN, Wi eg, (M4 ) (t,2,) 9 <0. (14)
Y xR

We now state an existence and uniqueness result for solutions of the limit problem:

Theorem 1 Let Ac W>™, (Y x R).

per,loc

1. Existence: let ug € L}OC(RN;C,,@T(Y)) N L>®(RN), and let fo(z,y,£&) = Lecug(ay), Jor (z,y,€) €
RY x Y x R. Assume that there exists a non-negative measure mo = mo(z,y, &) such that fy is
a solution of

omy

k3

N g 5
Z s (ai(y,8) fo) + == (an+1(y, &) fo) = 15)

23

and Supp mo C RN x Y x [-M, M|, where M = ||ug||oo -
Assume that there exist functions ui, us € L>®(Y) such that le<,, is a solution of (15) for
1 =1,2, for some non-negative measures my, ms, and

u1(y) < uo(z,y) <usly) for ae.z eRY yey. (16)

Then there exists a generalized kinetic solution f of the limit problem (in the sense of Definition
1), with initial data fo.
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2. “Rigidity”: let ug € L¥(RN x Y), and let f € L>=([0,00) x RN x Y x R) be a generalized
kinetic solution of the limit problem, with initial data fo = l¢cy,. Then there exists a function
u € L>®([0,00) x RY x Y) such that

ft,2,9,8) = Lecug,zy) almost everywhere.

3. Uniqueness and contraction principle: let ug,vg € L=°(RYN x Y), and let f,g be two generalized
kinetic solutions of the limit problem with initial data 1¢<y, and 1¢<,, respectively. Then there
exists a constant C > 0 such that for all t > 0, for all R, R’ > 0,

() = 9|11 (Brxy xr) < T (||uo — vl (B xy) +e ) . (17)

As a consequence, for all ug € L¥(RY x Y) N LL (RN, Cper(Y)) satisfying (15) and (16), there

exists a unique generalized kinetic solution f € L>([0,00) x RN x Y x R) of the limit problem.
Remark 1 Notice that for any function v € L>®(Y), v is an entropy solution of the cell problem
div,A(y,v(y)) =0 (18)
if and only if there exists a non-negative measure m € Mger(Y x R) such that equation
divye(a(y, §)lecu(y)) = Ocm
is satisfied in the sense of distributions on'Y x R. Hence equation (15) entails that ug is an entropy
solution of the cell equation (18). In that case, it is said that the initial data ug is “well-prepared”,

meaning that the microscopic profile of ug is adapted to the microstructure dictated by the equation.
In the case where A is divergence-free, condition (15) becomnes

N
Z a% (ai (ya €)1£<7J(y)) = 0.
i=1
Indeed, in that case, v satisfies
N
> 0y, (ai(y, )1ecu(y)) = dem
i=1

for some non-negative measure m such that Suppm CY x [-M, M]. Consequently, for & > —M,

we have
N

13
Z@ i (/ ai(va)1w<v(y) dw) = m(y,f) > 0.
i=1

—-M-1

Since the left-hand side has zero mean-value on'Y for all &€ € [—M, M|, we deduce that m = 0.
Thus, in the case where the flux A is divergence free, the limit system takes a slightly simpler form:
conditions (9), (14) become

diVy(a(l% g)f(ta $7 y7 6)) = 07
N
Of + > ai(y,§)0s,f =M,

i=1

/ Mok ) (t,2,-) 1 <0,
Y xR (19)
Vi € Lo (Y x R), divy(ap) =0, and dgp > 0.

All the other properties remain the same.
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Remark 2 Assume that the fluz A is divergence-free, and set

N
Cr = (v € ThlY xR), Y. % (a: (9, €)0(5,€)) = 0},

Cy = {p € LS(Y x R), detp > 0}.

Then Cy, Cy are convex sets of the vector space L} (Y x R). Thus condition (14) can be written
as follows: for all ¢ € D((—00,0) x RY) such that ¢ > 0, for all (t,z) € (0,00) x RN, we have

M p(t,z) € (C1 N Cy)°,

where C° denotes the normal cone of C. Let us recall that when the space dimension is finite (that
is, if C1,Co are convex cones in R? for some d € N), then

(cl(Cy) Nel(Cy))° =cl(CT + C3) ,

where cl(A) denotes the closure of the set A.
If we forget about the closure and the fact that we are considering convex sets in an infinite
dimensional space, then we are tempted to write

Mxp(t,z) € (C1NC2)° = pr + pa,

with p; € C?

7

1 =1,2. Moreover, very formally, we have
C35“="{0¢m, m non-negative measure}.

Thus, we may think of M as some distribution of the form

M = 0¢m + 1,

with m a non-negative measure on [0,00) x RN x Y x R, and pu; € CY.

Of course, these computations are not rigorous, but we believe they may help the reader to
understand the action of the distribution M (at least in the divergence-free case), even though the
precise structure of M shall not be needed in the proof. Inequality (14) is sufficient for all the
applications in this paper.

Let us stress that uniqueness for the limit problem holds, even though the cell problem does
not have a unique solution in general; indeed, in the linear divergence free case, that is, if A(y,§) =
b(y)¢, with divyb = 0, then a function u is a solution of the cell problem if

divy (b(y)u(y)) =0, (u), = 0.

The constant function equal to zero is a solution of this equation, but in general there are other
entropy solutions: for instance, let us consider the case where N = 2, and

b(ylv y2) = (_a2¢(y17 yQ)’ 81¢(y1a y2))7

for some function ¢ € C2,.(Y). Then any function v of the form g(¢) — (g(¢)), with g a continuous
function, is an entropy solution. Let us emphasize that nonlinearity assumptions on the flux are
not enough to ensure uniqueness of solutions either, see for instance [18].

In Theorem 1, uniqueness of solutions of the limit system follows from a contraction principle
associated with the macroscopic evolution equation, rather than the microscopic cell equation. The
well-preparedness of the initial data, that is, the fact that ug(z,-) is an entropy solution of the cell
problem, is fundamental.

On the other hand, the lack of uniqueness of solutions of the cell problem entails that in general,

there is no notion of homogenized problem. Indeed, if u is a solution of
divy A(y,p+u(y)) =0, (u)y =0,

then in general, the quantity
(AC,p+u("))
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depends on u (except when N = 1, and in some special cases, when N = 2; see [13,18]). Hence
the macroscopic and microscopic scales cannot be decoupled: if 1¢cy 1,4,y is a solution of the limit
evolution problem, then @(t,x) = (u(t, z,-)) does not satisfy any remarkable equation. This is the
main consequence of the absence of uniqueness for the cell problem.

Let us mention an important particular case of Theorem 1, which we call the “separate case”.
We now assume that the flux A can be written A(y,§) = ao(y)g(€), with divyap = 0. This case
has already been thoroughly investigated by Weinan E in [9] in the case where ¢'(£) # 0 for all &,
that is, when the function ¢ is strictly monotonous. Here, we prove that his results hold with no
restriction on g.

Let us introduce the so-called “constraint space”

Ko = {f € L'(Y); divy(apf) =0 in D'},

and the orthogonal projection Py on Ko N L?(Y) for the scalar product in L(Y).
Then the following properties hold: for all f,g € L?(Y), if f € Ko, then

Bo(fg) = fRo(9)-

And if f,g € Ko N L?(Y), then the product fg belongs to Ko. Notice also that all functions which
do not depend on y belong to Ko, and that L>°(Y") is stable by Py.

Proposition 1 Let ug € L*(RY,Cper(Y)) N L®(RY x Y) such that ug(z,-) € Ko for a.e. x € RY.
For 1 < i < N, define the vector valued function ag € L>®(Y)N by ao; = Polao;). Let u =
u(t, z;y) be the entropy solution of the scalar conservation law

{&u(t,x;y) + div, (ao(y)g(u(t,z;y))) =0, t>0, z € RY, y e, (20)

u(t = 07:E; y) = UO(‘T>y)‘

Then the function f(t,x,y,£) = lecu(t,a,y) 5 the unique generalized kinetic solution of the limit
problem (10) with initial data 1¢cyy(z,y)- In that case the distribution M is given by

M= 3 +g'(€)(ao(y) — ao(y)) - Vo f,

where m is the kinetic entropy defect measure associated with the function u, that is, f is a solution
of
Ohf +9'(&ao(y) - Vof = 9gm.

As a consequence, the solution u(t, z;y) of (20) is an entropy solution of
divy A(y,u) =0

for almost every (t,z) € (0,00) x RV,

1.2. Convergence results

Our first result is concerned with entropy solutions of (1).

Theorem 2 Let A € W2, (RN*Y). Assume that the initial data ug € L}, (RN, Cper(Y')) satisfies

per,loc loc

(15), (16). Let f = 1¢<,, be the unique generalized kinetic solution of the limit problem, with initial
data l¢cy,; the existence of f follows from Theorem 1. Then as € vanishes,

2 sc.
Lecus(ta) — lecu(tay): (21)

As a consequence, for all regularization kernels ©° of the form
1 T
SN N
@ (x)—éww(g)7 z €RY,
with o € DRY), [ =1,0 < ¢ <1, we have, for all compact set K C [0,00) x RV,

lim lim

Jim lim =0. (22)

LK)

uE(t, ) — uxy ©° (t, x, E)‘
€
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Remark 3 Assumption (15) means that ug is “well-prepared”, that is, ug(x,-) is an entropy solu-
tion of

divy (A(y, uo(z,y))) =0
for a.e. x € RN . If this hypothesis is not satisfied, then it is expected that the behavior of the sequence
u® will depend on the nature of the flux. If the flux is linear, then oscillations will propagate, and
the cell equation (9) shall not be satisfied in general. If the fluzx satisfies some strong nonlinearity
assumption, on the contrary, the conjecture is that the solution u® re-prepares itself in order to
match the microscopic profile dictated by the equation. Few results in this direction are known in
the hyperbolic case; the reader may consult for instance [2,10,12,25]. In [6], the author studies the
same equation as (1) in which a viscosity term of order € is added, and proves such a result, but
the method relies strongly on the parabolicity of the equation.

Remark 4 The way in which Theorem 2 is stated might seem slightly peculiar; indeed, convergence
results of the type

x
ut(t,z) —u (t,x, 7> —0 inlL},
€

are expected to hold. In order to establish such a result, it seems necessary to prove that

lim [ sup ‘u(t, z,y) — ug @ (t, 2, y)‘ dt dxz = 0.

6—0 /K yev
But the evolution equation for u (or rather, for 1¢,,) is given by Definition 1; since the distribution
M hinders most computations, it seems difficult to derive such estimates.

The next result generalizes Theorem 1 to weaker solutions of equation (1), called kinetic so-
lutions. In order to simplify the presentation, let us restrict the statement to the divergence-free
case; it is explained in the remark following the Theorem how to derive an analogous result when
the flux A is arbitrary.

For the reader’s convenience, we first recall the definition of kinetic solutions in the divergence-
free case (see [8] for the heterogeneous case, and the presentation in [23] for the homogeneous case).
For (u,v) € R?, set

1 if0<u<o,
x(u,v) =< —1 if v <u <0,
0 otherwise.

Definition 2 (Kinetic solutions of (1)) Let u € C([0,00), LY(RY)). Assume that there exists
a non-negative measure m® € C(Rg, M} ([0,00) x RN)) such that for all T > 0, the function

T
5}—»/ m(t,xz,£) dt dz
0o JrN

is bounded on R, and vanishes as |£] — 0.
Assume also that f&(t,z,£) := x(&,u(t,x)) is a solution in the sense of distributions of the linear
transport equation

aé;;s + ia (£.€) 0t = agge t>0, zeRY, (23)
F=0=x(gu(x.%)). (24)

Then it is said that u® is a kinetic solution of equation (1).

Remark 5 Let us recall the Definition of the space C(R¢, ML ([0, 00) x RY)). Let m € M*([0, 00) x
RN); for 6 € C.([0,00) x RY)), define g € M'(R) by

Lo = /000 /RN m(t,x,-)0(t, z) dt dx.
Then
C(Re, ML ([0,00) x RY)) := {m € M*([0,00) x RY); VO € C.([0,00) x RY)), g € C(R)}.
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The existence of kinetic solutions of (1) is only known when the flux satisfies additionnal
regularity assumptions. Assume that a; € CJ. (Y x R) for 1 < i < N, and that there exists a
constant C' such that

la(y, )l <C (1 +[f]) VyeY vEeR. (25)

Under such hypotheses, it is proved in [8] that for all ug € L'(RY, Cper(Y)), there exists a unique
function u® € C([0,00), LY(RY)) such that y(&, u) is a solution of (1); u® is called the kinetic
solution of (1)-(2). And if u® is bounded in L>((0,T) x RY) for all T > 0, then v is the entropy
solution of (1). Moreover, a contraction principle holds between kinetic solutions.

Let us now state the convergence result for kinetic solutions :

Theorem 3 Let A € W2 per, r10c(Y X R) such that divyA(y,&) = 0 for all y,&. Assume that a; €
CL.(Y xR) for 1 <i < N, and that (25) is satisfied. Assume that the initial data uo belongs to

per

LYRYN,CL(Y)) and satisfies

s Yper

Y9
Z 67 az y7 (57“0)) =0.

Let u® € C([0,00), L*(RY)) be the kinetic solution of (1) with initial data uo(z, /). Then there
ezists a function u € L*([0,00), LY (RN x Y)) such that the convergence results (21) and (22) hold,
and

Moreover, if we set
0 al 0
L . /
M= Zox(&u) + ;:1 m(y@)—amx(au) eD,

then M satisfies (19).

Remark 6 Let us explain how this result can be generalized to the general case. First, the L'
setting is not adapted to this case, because the L' norm is not conserved by the equation in general.
Hence another notion of kinetic solutions is needed; the correct functional space should be of the
type V + LY(RY), where V is a fized solution of the cell problem.

Then, the crucial point in Theorem 3 is to find a sequence ug such that ug converges towards
ug in LY (RN, Cper(Y)), and for all n € N, u? satisfies (15), (16). Finding such a sequence is easy
in the divergence-free case, but seems more difficult in the general case, since solutions of the cell
problem are not known. This seems to be the main obstacle to the generalization of Theorem 3 to
arbitrary fluxes. If this step is admitted, it is likely that the proof of Theorem 3 can be adapted to
general settings.

The organization of the paper is the following: in section 2 we prove, under the hypotheses of
Theorem 2, that the two-scale limit of the sequence 1¢oye(¢4) is a generalized kinetic solution of
the limit system. In section 3, we study the limit problem introduced in Definition 1 and we prove
the rigidity and uniqueness results in Theorem 1; hence Theorem 1 and 2 will be proved by the end
of section 3. In section 4, we study a relaxation model of BGK type, approaching the limit system
in the divergence free case. In section 5, we prove Proposition 1. Eventually, in section 6, we have
gathered further remarks on the notion of limit evolution problem.

2. Asymptotic behavior of the sequence u®

In this section, we prove that the two-scale limit of the sequence f© = 1¢ye (4 ), say o, x,y,€),
is a generalized kinetic solution of the limit system; thus the existence result of Theorem 1 fol-
lows from this section. The organization is the following: we first derive some basic (microscopic)
properties for the function f°. Then we explain how regularization by convolution can be used
in two-scale problems. The two other subsections are devoted to the other properties of the limit
system, namely condition (14) and the strong continuity at time ¢ = 0.
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2.1. Basic properties of f°

We use the concept of two-scale convergence, formalized by G. Allaire after an idea of G.
N’Guetseng (see [1,21]). The fundamental result of [1] can be generalized to the present setting as
follows:

Corollary 1 Let (¢°)c>0 be a bounded sequence in L°°((0,00) xRN*1). Then there exists a function
g% € L=((0,00) x RNV x Y x R), and a subsequence (¢,,) such that e, — 0 as n — oo, such that

/OOO/HW gt )t S g dtdmd§—>/ooo /uwango(t’x’y’f)w(t’x’y”f) -

for all functions 1 € L*((0,00) x RNT1:Cpern(Y)).
It is said that the sequence (95" )nen two-scale converges towards g°.
Here, the sequence f€ is bounded by 1 in L°°; hence we can extract a subsequence, still denoted

by ¢, and find a function f° € L>((0,00) x RY x Y x R) such that (f¢) two-scale converges towards
fO. It is easily checked that f° inherits the following properties from the sequence f¢

0< ftz,y,6) <1, (26)
o:f° <. (27)

Now, let us prove (7)-(8): let
M = max ([[u]]oo; [ |uzlloo)

where u1, ug are the functions appearing in assumption (16). Since u; (x/¢) is a stationary solution
of (1), by a comparison principle for equation (1), we deduce that

T x
Uy (7) <uf(t,z) < wus (7) for almost every t > 0, z € RV,
€ €

Thus [[u]| e ([0,00)xry < M, and for almost every t,z,§, for all € > 0,

fs(t7x7§):1 1f£<_Ma
F(ta,€) =0 if&> M.

Passing to the two-scale limit, we infer (7) and (8).
Now, we derive a microscopic equation for f°. First, multiplying (4) by S’(¢), with S’ € D(R),
and integrating on (0,7) x Bg x R, with T"> 0, R > 0, yields

/BR (S(uE(T,x)) —S(uo (x,f dx+/T//aB a E,f ng(z) 28" (€) dog(x) de dt—
**/ //BR aN+1 fES”(é) dz dS dt = / / BRm (t,2,€)S"(€) du dé dt,

where ng(z) is the outward-pointing normal to Br at a given point « € dBg, and dog(x) is the
Lebesgue measure on 0BRg.
Hence we obtain the following bound on m®

ma(((),T) X BR X R) S OT,R

foralle >0, R >0, T > 0, and Suppm® C (0,00) x R x [-M, M].

Consequently, there exists a further subsequence, still denoted by €, and a non-negative measure
m® = mO(t,z,y, £) such that em® two-scale converges to m° (the concept of two-scale convergence
can easily be generalized to measures; the arguments are the same as in [1], the only difference lies
in the functional spaces). Moreover, Supp m® C (0,00) x R x Y x [-M, M].

We now multiply (4) by test functions of the type g (¢, x,x/¢,&), with ¢ € Dpe([0,00) x
RY x Y x R), and we pass to the two-scale limit. We obtain, in the sense of distributions on
(0,0) x RN x Y xR

mO
(@ 1°) + 5 (v 6)°) = (29)

0
Ay;
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Thus (9) is satisfied, which completes the derivation of the basic properties of f°.
Now, we define the distribution

a 0
M: ot +Zai(y7§)
i=1

fO
8%1' '

The distribution M obviously satisfies (6). The next step is to prove that M satisfies (14); since
regularizations by convolution are involved in condition (14), we now describe the links between
convolution and two-scale convergence.

2.2. Regularization by convolution and two-scale convergence

In this subsection, we wish to make a few remarks concerning the links between convolution
and two-scale convergence. Indeed, it is a well-known fact that if a sequence (f,,) weakly converges
in L2(RY) towards a function f, then for all convolution kernels ¢ = (), the sequence (f, * ©)
two-scale converges in L? towards f * ¢. It would be convenient to have a similar property for
two-scale limits. However, in general, if a sequence f¢ = f¢(z) is bounded in L?(RY) and two-scale
converges towards a function f = f(z,y) € L>(RY x Y), then f¢ x ¢ does not two-scale converge
towards f *, ¢. Indeed, if ¢ = ¢ (x,y) € L2(RY,Cper(Y)), then

/RN fExp(x)y (x, g) dx
= fe(@)p(x — 2’ ) (x, g) dx dz’

R2N

= | r ) URN pla—a'y (z.%) dx] :

In general, the quantity between brackets in the last integral cannot be written as a function of x’
and z’ /e, and it seems difficult to pass to the limit as ¢ — 0.

In order to get rid of this difficulty, let us suggest the following construction, which is reminiscent
of the doubling of variables in the papers of Kruzkov, see [16,17]. With the same notations as above,
consider the test function (¢ *, ¢) (z,7/¢), where p(z) := p(—z) Vr € RN. Then by definition of
the two-scale convergence,

F@ el (02) doo [ faw) bl ) dedy

RN RN xY

And

!

/RN (@) [+ & (90, g) dr = - fe(@ oz — 2’ )y <:c, i) dx da’,
/ F(@9) [+ @) (2,y) d dy = / [F %o o] (2 9, ) da dy.
RN xY R

NxYy

Consequently, as € — 0,

/

P (o D) arad = [ (fadeasenda @)

R2N RN XY

for all ¢ € D(RY), for all ¢ € L*(RY, Cper (Y)).

In fact, different assumptions on the function ¢ can be chosen; the key point is that v should
be an admissible test function in the sense of Allaire (see [1]). In particular, if there exist functions
Y1 € D(RN), hy € L=(Y) such that

Y(z,y) = P1(z)2(y),

then ¢ is an admissible test function, and (29) holds.
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2.3. Proof of the condition on M

The goal of this subsection is to prove that with
N
M =0, "+ ai(y, €0, f°,
i=1
condition (14) holds; hence, let » € D(R x RY), 6 € D([0,00) x RY), such that

¢=>0,02=0,
o(t,x) =0Vt >0, Vo € RY.
The function ¢ shall be used as a convolution kernel, which explains the hypothesis on its support.
We do not assume that 6(t = 0) = 0.
Let ¢ € G arbitrary (the set G was introduced in Definition 1), and let Cy be a compact set in R

such that [—-M, M] C Cy, where M is the constant in properties (6)-(8). We have to prove that the
quantity

o (o) N
A= /O /0 /wayxco £2(s,2,9,) {(%P(t —s,x—z)+ Zai(%ﬁ)@@(t —s,x— Z)} %

i=1
x Y(y,£)0(t,x) d€ dy dx dz ds dt
in non-positive. Notice that properties (6)-(8) entail that the quantity A is independent of the set
Co.

Before going into the technicalities, let us explain formally why the property is true; let us
forget about the convolution and the regularity issues, and take the test function

ot 2w (Z.¢)

in equation (4).
Let R > max(M,C + 1); recall that M and C are such that

fo(taxay7€) =0 lff > Ma
fO(t7x7y7€) =1 lfé- < _Mu

and (y, &) = a_ if £ < —C. Integrating on [0, 00) x RY x [~ R, R], we obtain

/OOO /RN /j;ff(t,x,g) [8t0(t7:c)+ai (gg) Bmig(t,x)] w(g,g) da d€ dt
_i/ooo/w /_fo(t7x,§)glg (£.€) o1t,2) do e at
+a_ /000 /RN %aN_H <§,—R) 0(t,x) dt dx

[T e (Re) dsdeas— [ 1oy ote =000 (2.6) asde

Notice that
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and thus

[ Lo e vo (Ze)asen] v (2) waca
/0°° /IRN /z [m 558 afw( 5) - éﬂ 65) 35f5(t,x,£)] 0(t,x) dz d¢ ds
o OOO /RN A (f,fR) 8:0(t, ) dtdxf/RN /215@0(%?)0@0,@1/; (gg) dz d¢

> a/ /RN ffR 80(txdtdx—/ /Zlg%w, (t:O,x)z/;<g,§)d:cd£.

Passing to the limit as € — 0, we retrieve
oo R
L] e 0o + 0 (0. 0.00.2)] 6 (0.6) do dy de i
0 N —
oo R
can [ ARt dededy— [ [ decuo 0= 0,000 (5.€) do dé dy
0o JRVNxY RN J_R

R
_/ / 1E<u0(z,y) a(t = 0? 55)7/} (ya 5) dx df
RN J-R

This means exactly that

T IRATS o
A, ai S 07
ot Y><]Rf vt 0z; Jy «r £

or in other words, that foR M) < 0 in the sense of distributions on [0, 00) x R,
Now, we go back to the regularizations by convolution. According to the preceding subsection,

_ili%/ / /RZNXCO (s,2,€) {atgo(t—s x—z) iv;a,' (i,é)@iw(t—s,x—z)}x

X 1 (gg) o(t,z) de de dz ds dt.
Hence, in (4), we consider the test function

o(s,2,8) = {/ /]RN (t—s,x—2) (tx)dtdx} wg( «f) K(¢),

where

e K is a cut-off function such that 0 < K <1, K € D(R), K(¢) = 11if |{] < R (R is the same
parameter as before, and satisfies R > max(M,C + 1));
o Y5 =P xy pf x¢ 3, with o1 € D(RY), 2 € D(R), 0 < p; < 1, Jpi=1fori=1,2, and

1 1
ol(y) = SN (%) . 95 = 5¥2 (g) , 0<do<l

According to (4), we have

/ /RN+1 szé[s¢sz§+2az(7) (szf)] dz d€ ds
/ / (s,z,8)ant1 ( §> Oc (s, 2,€) dz d€ ds (30)
RN+1

B /0 /RN+1 m®(s,2,£)0¢¢(s, 2, €) dz d§ ds + /}RN+1 X (f;uo (Z, g)) d(s=0,2,8) dz d€
=0.
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And

o €
N [/W/R ot — 5,0 — 2)0(t, ) de dx} vs (2.€) aekc(©)

d(s=0,2,8) = U /RN x— 2) tx)dtdx]¢5< g) K(€) = 0.

Using the assumption on the sign of 6, ¢, and the fact that
Beths = (D) *y 7 *¢ 05 > 0,

we derive

[/OOO /]RN ot — 5,2 —2) 0(t,z) dt dl’} K (&) O¢bs (?f) > 0.

Moreover, due to (7), (8), and the assumptions on ¢ and K, we have d¢ K = 0 on Supp m®, and,
for all £ € R,

Tt s,w— ) 00 a) de de| s (2,€) 0K (€ £ (5,2,)
L Jus (2
—a VOOO /RN ot — 5,2 — 2) 0t z) dt dm] DK (€)Leanr.

Hence, we obtain, for all €, > 0,

N
—/f(s,z,g) {atsou—s,x—zwzai (Z.¢) @»so(t—s,x—z)} x
1=1
s (gg) o(t,z) dé dz dz ds dt
% / Fo(s,2,6)a (gg) SV eths (gg) ot — 5,7 — 2) 0(t,x) K(€) dt dz ds dz de

+a?_ /<p(t —s,x—2)0(t,x) 0K (€)ant1 (g,ﬁ) lecy dt de ds dz d€
> 0.
Following the formal calculations above, we have to investigate the sign of the term
z z
[ Fs.2.00a(206) - Vievs (2.€) lt = s, = 2) Blt,0) K(©)di dr d d .

Since divy ¢(atp) = —0¢pt, we have

. 0
divy ¢ (arhs) = —% + 75

where p15 = pu %, ¢ *¢ 5, and 75 is a remainder term. Then

_/0OQ RN+1 8525 I |:/ /RN (t—s x—z)@(t :L‘)dtdx] ds dz d€

——/OOO/NH ))ua U /RN t—sx—z)@(tm)dtdx} ds dz d¢ < 0.
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Hence, we have to prove that as § — 0,
rs — 0 in L (Y x R).
The proof is quite classical. We have

r5(y, &) = aly, v * (Vy.epd03) — [aly, v] * (Vyepieh)
= f; [ai(y,€) = ai(yr, €] V(Y15 )0y, 21 (y — y1) (€ — &1) dy1 d&
+ [ la (009 — awaon, €0 wlon, €)1y — )€ — €0) dun di
Thus, we compute, for (y,y1,€,61) € RPVF2, 1< < N + 1,
0l €) — ailyn &) = (5 — 1) /01 Vyai(ry + (1= Ty, 7€ + (1 - 7)&1) dr
+(E &) /01 O¢ai(ty + (1 —7)y1, 7§+ (1 = 7)&1) dr

Set, for 1 < k,i < N,ycRN ¢£ecR,

Pr,i(Y,€) = Yk ?;Zl (y)p2(8), k. N+1(y,€) = yk%(&)%(y),

o

Gy, €) = sajwy)mg), Cvn1:6) = €S2 (€r o)

Notice that for I <k < N, 1 <i< N +1,

/ ki = —Ok,is / G =—0N+1,-
RN+1 RN+1

Then
N+1 N 8a
=y Z / : — Ty, 7€+ (1= 1)ENY (Y1, )03 (y — y1, & — &) dyr dé; dr
=1
N+
Z Yy1, 7€+ (1 = 7)E)Y(y1, &) (y — y1, € — &) dyr déy dr.

=1

Hence as § — 0, 5 converges to

7divy,§(a(y7 E)) 1/1(.% g) =0

in L (RN*1) for any p < oo and for all (t,2) € [0,00) x RY. We now pass to the limit as § — 0,
with ¢ fixed, and we obtain

—/fg(s, z,§) {8tg0(t —s,x—2z)+a; (g,f) Oip(t —s,x — z)} P (§’€> O(t,x) d§ dx dz ds dt
—a_ /0@, ) 0K (£)A (g 5) Vaop(t — s,z — 2) dt do ds dz de
> 0.

Passing to the limit as ¢ vanishes, we are led to

~ [ Ps.50. Bup(t = 5,2 - 2) 4 a1 (1.€) Bl — 5.0 = )
K&y (y,£)0(t, x) d§ dx dz ds dy dt
—a_ /Q(t, z) OeK(§)A(y,8) - Vap(t — s,z — z) dt de ds dy dz dE
> 0.
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Since

/H(t,x)vzso(t —s,x—z)dtdrdsdz = — (/9(t, x) dt dw) (/ V.p(s,z) ds dz) =0,

we deduce that

i=1

N
/fo(svz,y,é“) {c‘)t@(t —s,x—2z)+ Zai (y,€) Os0(t — 5,0 — z)} X

x 1 (y,€) K(€)0(t, 2)d¢ da dz ds dy dt <0,

which means that f° satisfies condition (14). There only remains to check the strong continuity of
f at time ¢ = 0.

2.4. Strong continuity at time t =0

The continuity property forf? is inherited from uniform continuity properties at time ¢t = 0
for the sequence f¢. This is strongly linked to the well-preparedness of the initial data (condition
(15)), that is, the fact that for all z € RY, ug(x,-) is an entropy solution of the cell problem

divy A(y, uo(z, y)) = 0.
First, let us consider a regularization of the initial data
gg = fo *z pn *y SD? *¢ Sog'

with p, € D(RY) a convolution kernel (n € N), § > 0, and ¢? defined as in the previous subsection.
Then we can write

N
IACORCATIAEE) RN EFTRS
La(Ze) (Taaat) (2.6) + T (1) (k) (n26)
7’2,5
Notice that
HVJCQ?LHLOO(]RNXYxR) < ||vmpn||L1(RN)a
and
a(y,&) Vyegy (x,y,€) = demy, + 19,
where
mo

s 5
n = 10 *z Pn *y P1 *¢ Po,

T’i(%y,f) =a (yvf) Vy»fgz (m,y,&) - [afO *g Pn] *y,€ Vy,ggo(f(y)gog(f)

Then for all n € N, for all z € RY, 79 vanishes as § — 0 in L}

1e(Y x R) and almost everywhere.
The proof of this fact is exactly the same as in the preceding subsection, and thus, we leave the

details to the reader. As a consequence, we can write

1 x
i o, €) = —0emi, (2, 2,€) + Ri y(x,€),
and there exists a constant C,, independent of €, such that for all n € N, for all £ > 0, and for
almost every x, &

limsup |R;, 5(z,§)| < Ch.
6—0

Moreover, R}, ;(z,§) =0 if £ > M + 6. In the following, we take § < 1.
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Now, we multiply (4) by 1 —2g° (z,x/¢,£), and (31) by 1 — 2f%(t, x,£). Setting

Bt €)= f(t2.6) + gb (v, 2.€) —2/%(t.2. 990 (2. 2.¢)

= |f*(t,x,6) — g, (Igﬁ)f + 95, (w gf) — o (fcgﬁ) g
we obtain
0 al 1
a5t st 2, ) —|—;al( )&Chm;(txg) EaN+1(€ 5)55}%5(75305)

_0m®
=

(1263 (2, %.6)] + Zoemd (2, 2, €) U 27 (1,0, €] + B sl )1~ 27°(0,,€)).
(32)

Notice that

Oc[1—2f(t,z,8)] =26(§ =u'(t,z)) >0
2 (-2t (= 2.9) >

Notice also that f¢(t,z,¢) — ¢ (z,z/e,€) = 0 if |¢] is large enough (|¢| > M + 1), whence h;, 5 has
compact support in &.

Take a cut-off function ¢ € C*°(RY) such that ((z) = e~1*! when |z| > 1, and 1 < ¢(z) <1 for
|z| < 1. Then there exists a constant C' such that

IV.¢(2)] < C¢(z) Vo eRY,
Hence, multiplying (32) by ¢(x) and integrating on RN¥*! we obtain a bound of the type

4
dt Jry+1

na(ts 0 8)0(@) dw dt < C/ 5(t2,6)¢() da dg
+ /]R . |RS 5(2,6)] 11 —2f5(t,2,8)|((x) du dE.

Using Gronwall’s lemma and passing to the limit as § — 0 with £ and n € N fixed, we retrieve, for
allt > 0,

&) —gn (2. 2.6)[ (o) do e

£) -

Fea = (v 20| cwarac <o [

+ eCt/ {gn (z,
RN+1

+ C’n(eCt - 1),

o (2. 2.6)[ | o e

where the constant C,, does not depend on ¢, and g,, = fo *, pn- And for all n € N, ¢ > 0, we have

L
< /RN+1 /RN ‘fo (m,g,f) = Jo (x’, g,i)‘Qpn(x—x')((x) dx dz’ d¢
< /]RN /RN Up :I?,f’f) — g (m',?@) pu(x — 2')C(2) dx da’

/RN/R sup |ug (,y,§) —uo (¢',4,8)| pn(z — 2")C(2) dz dx’.

N yEY

fo (2. 2.€) —gu (. 2,6)| ) e e
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The right-hand side of the above inequality vanishes as n — oo because ug € L (RN, Cper (V).

Similarly,
ISR
< [ o (@28 = 5o (0. 26) | ) ot
[ [fo (#.2.¢) ~ g (xiﬁﬂ () da d
<3 o (o 2) = no (0. 26) e o
<3 [ [ supluo @09 = (9.9 pule = a)C(w) da o'

yey

Hence, we deduce that there exists a function w : [0,00) — [0,00), independent of ¢ and
satisfying lim; o w(t) = 0, such that

/]RN+1
for all ¢t > 0.

Then, we prove that the same property holds for the function fO, that is, the two-scale limit of
the sequence f¢. Indeed, we write

(6, = fo (. 2.€) (@) do dg < wit)

et x,€) — 1£<u0(a:,f> = fc— 2f81§<u0(3:,f> + 1£<UO(%%);

let € L*>°([0, 00)) with compact support and such that 6 > 0. Then for all € > 0,

/O°° /RN+1 17 =20 T o)+ Tecuy(o2)] C@)0(0) dad€ dt < /Ooo w(t)O(t) dt.

Since ug € L . (RY,Cpher(Y)), it is an admissible test function in the sense of G. Allaire (see [1]);
we deduce that 1¢<,, is also an admissible test function. This is not entirely obvious because it
is a discontinuous function of uy. However, this difficulty can be overcome thanks to an argument
similar to the one developed below in subsection 3.3, and which we do not reproduce here. Thus,
we can pass to the two-scale limit in the above inequality. We obtain

/ / POt 5,€) — FO 20 €7 + 12 2, €) — Lecun o PO)C(2) dt dar dy dE <
0 RN+1xY

< /O 0(t)w(t) dt

Notice that f° — |f°|? > 0 almost everywhere. As a consequence, taking () = 1g<t<,, with 7 > 0
arbitrary, we deduce that

/ ’fo X (& up(z,y)) ‘ C(x dtdxdygl/ w(t) dt,
T Jo

and the left-hand side vanishes as 7 — 0. Thus the continuity property is satisfied at time ¢ = 0.

Hence, we have proved that any two-scale limit of the sequence f¢ is a solution of the limit
system. Thus the existence result in Theorem 1 is proved, as well as the convergence result of
Theorem 2. We now tackle the proof of the uniqueness and rigidity results of Theorem 1. The
strong convergence result of Theorem 1 will follow from the rigidity.
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3. Uniqueness of solutions of the limit evolution problem

In this section, we prove the second and the third point in Theorem 1, that is, if f is any
solution of the limit evolution problem, then there exists a function u € L>([0, 00) x RY x Y) such
that f(t,2,y,&) = Llecy(t,z,y) almost everywhere, and if f1 = 1¢cy,, f2 = lecu, are two generalized
kinetic solutions, then the contraction principle (17) holds.

3.1. The rigidity result

Let f be a generalized kinetic solution of the limit problem, with initial data 1e¢cy,. The
rigidity result relies on the comparison between f and f2. Precisely, we prove that f = f2 almost
everywhere, and since ¢ f < 0, there exists a function « such that f = 1¢,. Thus, we now turn
to the derivation of the equality f = f2.

Let 6 > 0 arbitrary, and let 6; € D(R), 65 € D(RY) such that

61 >0, 02 >0,

/elz 0o =1,
R RN

Supp 6 C [-1,0] and 61(0) = 0.

1 t T
5 _
A <5) % (3)-
Set O := f s, 0° M®:= M *;, 0° Then f° is a solution of

We set, for (t,r) € RN*1

8 & ofr s
WwL;az(y,{)axi = M°.

Moreover, f? satisfies the following properties

0< <, (33)
divy ¢(a(y, ) f°) = Ogm ¢, 0°, (34)
def° <0, (35)
o8 =0 ife>M, f(,6)=1 ife¢<—M, (36)
whereas M? satisfies
M® e C((0,T) x RN, L2(Y x R)) N L=([0,00) x RN x ¥ x R), (37)
MP(-,€) =0 if |¢] > M, (38)
M(t,z)p <0 Vo eGV(tx)e[0,00) x RY. (39)

Y xR

In particular, notice that (1 — 2f%(¢t,z)) € G for all t,z, and f°(t,z,y,&) — fo(t,x,y,£)% = 0 if
€] > M.

Let ¢ € C>®(R™) be a cut-off function as in the previous subsection. We multiply by (1 —2f°)¢
the equation satisfied by f?, and we integrate over RV x Y x R. We obtain

d

- (=112 ¢~ / ai(y £)9:C(x) (£° — F°]*) = / M (1=2f°) ¢ <0.
dt Jrnyxyxr RN xY xR RN xY xR

We then deduce successively, using Gronwall’s lemma,

d (-1 P)c<C / (F° = 12) ¢,
R RN xY xR

dt RN XY x

/ (£ — [P (D) ¢ < et / (F(t=0)— £t =0)2) ¢ >0,
RN XY xR

RN xY xR

T cr
5 | £6)2 e”t —1 5h oy £8 (s — o2
Ll - —= [  (Fe-0-ire=op @
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and the constant C' depends only on ||a||pe(y x[-R,R))-

Now, let us check that f(t = 0) strongly converges towards 1¢,, = fo at time ¢ = 0. In fact,
the main difference between the rigidity result of Theorem 1 and the one for generalized kinetic
solutions of scalar conservation laws (see chapter 4 in [23]) lies in this particular point. Indeed,
in the case of scalar conservation laws, the continuity property can be inferred from the equation
itself; in the present case, the lack of structure of the right-hand side M prevents us from deriving
such a result, and hence the continuity of solutions at time ¢ = 0 is a necessary assumption in
Definition 1.

Using hypothesis (13), we write, for almost every z,y, &,

f6(t:O7x7ya§) :/ f(57zaya§)05(757x72) dsdz
RN+1
fé(t = 03I5y7£) - fO *x QS(I,y,ﬁ) = [RNJJ (f(swzayaf) - fO(zay7§)) 96(757:6 - Z) dsdz.

As a consequence, for all § > 0
s 512
[ 15w = 0= o 637 (o) dady e
RN xY xR

< / / F(5:2,8,€) — fols g, E) C(@)° (=8, — 2) dr dy dE ds dz
RN XY xR JRN+1

—S

1 .
< /]R 1£(s) = foll 72 s xy xr.c(a) do dy ae) 501 <5) ds dx dy d§ + 2M Y] [|¢ = ¢ * 63| 1 )
c [ 2 55
< g/o () = follZ2®nN xy xRoc(2) do dy de) 45 + 2MIY T [[¢ = Cx O] L1 (mo).-

The right-hand side of the last inequality vanishes as § — 0, and thus f°(¢ = 0) converges towards
foasd — 0in L2 (RN x Y x R, ((x) dz dy df), and hence also in L'(RY x Y x R, {(z) dx dy df).
Consequently,

/ (fot=0)—f(t=0)2)¢(—0 asd— 0.
RN xY xR

Above, we have used the fact that fo = 1¢<y,, and thus fo = f3.
Now, we pass to the limit as § — 0 in (40); we obtain, for all T > 0,

/oT/RNXYXR (f=r)e=<o

Since the integrand in the left-hand side is non-negative, we deduce that f = f? almost everywhere.
The rigidity property follows.

3.2. Contraction principle

Let f1, fo be two generalized kinetic solutions of the limit problem; we denote by Mi, Ms,
and My, Ms, the constants and distributions associated to fi, fs, respectively. Without loss of
generality, we assume that M; < Ms. According to the rigidity result, there exist functions uy, us €
L>=([0,00) x RY x Y) N L*°(]0,00), LY (RN x Y)) such that f; = 1ecu,.

As in the previous subsection, we regularize f;, M; by convolution in the variables ¢, z, and we
denote by f?, M? the functions thus obtained. The strategy of the proof is the same as in [23],
Theorem 4.3.1. The idea is to derive an inequality of the type

where ( is a cut-off function as in the previous section.
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Since |f1(t) — f2(t)| = |f1(t) — f2(t)|? = f1 + f2 — 2f1 fa, let us first write the equation satisfied
by ¢° == f{ + f§ — 20 f3. We compute

N

0

fout a0 st -t} <o
i=1 ¢

J )
{atf§+zai(y7§>(%f§ :Mg} x1-2f].
i=1 ‘

Adding the two equations thus obtained leads to

N
0
g+ ai(y,€)5—g" = M [1=2f5] + M3 [1 - 2f7].
i=1 ¢

Notice that thanks to (7), (8) and the microscopic constraints (9), (11), 1 — 2f3(¢,z) € G for all
(t,z). Hence
M(t,z) [1—2f](t,2)] <0 V(t,z) € [0,00) x RV,
Y xR
and the same inequality holds if the roles of f; and f5 are exchanged.
Now, take a cut-off function ¢ € C*°(RY) satisfying the same assumptions as in the previous
subsection; multiply the equation on ¢° by ¢(z), and integrate over RY x Y x R; this yields

d
7/ 9’ (t,2,y,§)¢(x) do dy d§ < C 9’ (t, 2, y,€)¢(x) do dy d§ Yt >0,
dt Jgyxy xR RN XY xR
and thus
[, Ptepai@dayde<e [ @lt= 03,60 dody ds
RN xY xR RN xY xR

According to the strong convergence results of fJ(¢ = 0) derived in the previous section, we can
pass to the limit as § — 0. We infer that for almost every ¢ > 0,

/ ‘fl(t,xayag)7f2(t,1’7y7£)|<($) dxdydg
RN XY xR

Seot/]RN Y R|f1(t=0,$7ya§)—f2(t:0>$7y,§)|(:($) dxdydf (42)

This completes the derivation of the contraction principle for the limit system. Uniqueness
of solutions of the limit system follows. In particular, we deduce that the whole sequence f¢ of
solutions of (4) two-scale converges towards f°.

3.8. Strong convergence result

Here, we explain why the strong convergence result stated in Theorem 2 holds, that is, we prove

(22). This fact is rather classical, and is a direct consequence of the fact that
2 sg.
Lecus(ta) — Le<u(ta):

Let us express this result in terms of Young measures: the above two-scale convergence is strictly
equivalent to the fact that the two-scale Young measure v, ., associated with the sequence u° is
the Dirac mass §(§ = u(t,z,y)) (see [23], Chapter 2). And it is well-known (see [9]) that if u is a
smooth function, then

Wi (§) =0 = ult,y) > w —u(t2.Z) =0 in L.

However, here, the function w is not smooth, but this issue is bypassed by using convolution
kernels. For the reader’s convenience, we now prove the result without using two-scale Young
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measures. We define us = ux, 5, with 5 a standard mollifier. Let K € D(R) such that 0 < K <1,
and K(§) =1if |¢] < M. Consider also a sequence 6,, € C*°(R) such that 0 < 6,, <1, and

. 1 ) 1
On(§) =11 € < s On(§) =01if £ > e

Then we have

2
= Lecust,0) = 2lecuy(ta,2) Le<us (t0) T Lecuy(t0,2)

Lecus(to) =~ Lecus(t0,2)
= lmin(us(t,a:),ug (t,w,%))<€<max(u5(t,x),u5 (t,m,%)) .

The function 1., (ta0,2 is not smooth enough to be used as an oscillating test function. Thus we
s(tw,2)

(e (15).

and we evaluate the difference: for all compact set C' C [0,00) x RY, for all 6, > 0,

/C/R‘%W(w%) — 0 (&= us (1,2, g))’K(g) dt dz dg < %|C\.

According to the two-scale convergence result, for all n € N|

/ / _ u5 f)) Tecus (ty K (€) dt d dg —

- / / B (€ — us (1 2,9)) Lecu(rog K (€) dt dar dy dE.
C JR

replace it by

Since the sequence 6,, (€ — us) uniformly converges towards le<,, as n — oo, we can pass to the
limit as n — oo, and we deduce

/ / st ) Lo K (€) it dir dE — / /R Lecustto Lecu(tny K (€) dt d dy de.
XY

Simlarly, as ¢ — 0, for all § > 0,
/ / 1£<u5(t,w,% K(¢) dt dx d§ — / / Lecus(ta,) K (§) dt d dy dE,
cJr RXxY

/ / Tecue(t,0) K (§) dt dx d€ — / / Lecu(t,ey) K (§) dt dx dy dE.
C JRXY
Thus, as € — 0, for all § > 0,

/C/R‘lxus(t,x)*1g<u5(m,g)

On the other hand,

z
1 ’ - 1 : B (t7 ’ 7) ’
/C-/R‘ E<us (t,x) g<us(t,o,2) ) —us (t,x 5

/ / {1£<u(t,m,y) - 1§<u5(t,fc,y)} K(f) dt dx dy dé— = ||'LL - u5||L1(C><Y)~
C JRXY

K(©didode — [ [ [ecuom — Lecustuom| K(©dedodyds
C JRXY

©)

e’

Hence we have proved that for all § > 0, for all compact set C' C [0,00) x RV,

us(t, z) — ug (t,x, f))

3

lim
e—0

ey |l = usllLr(oxv)-

Statement (22) then follows from standard convolution results.
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3.4. Application: proof of the convergence result for kinetic solutions

In this subsection, we prove Theorem 3; this result is in fact an easy consequence of the con-
vergence result stated in Theorem 2 for entropy solutions, and of the contraction principle for the
limit system. Assume that ayi;1 = 0, and let u® be a kinetic solution of equation (1), with an
initial data uo(z,z/¢) such that up € L*(RY,Cper(Y)) and

S
i=1 7"

in the sense of distributions.
For n € N, let u? := sgn(ug) inf(|ug|,n). Then for all n € N, u? belongs to L=(RY x Y) and

uy —ug asn — oo in L'(RY,Cper(Y)).

Moreover, x(&,uf) = (&, u0)1j¢|<n, and thus for all n € N, ug satisfies (43).

For all n,e > 0, let u5 € C([0, 00), LY (R™)) N L*([0, 00) x RY) be the unique entropy solution
of equation (1) with initial data uf(x,2/¢). Then by the contraction principle for kinetic solutions
of scalar conservation laws, we have

x X
VR €N, |[|u® —ugl|Lec((0,00),L1(&RV)) < Huo (x, *) —ug (% E)‘

! < luo —ugllpr vy cper(v))-

L1(RN)

On the other hand, for all n € N, let 1., be the unique solution of the limit system with
initial data 1¢<yz. By the contraction principle for solutions of the limit system (see inequality
(42)), we have, for all integers n,m € N, for all ¢t > 0,

/ un(t, 2, y) = um(t, 2, y)| {(z) dv dy < eCt/ ug' (8, @, y) — ug (¢, 2, )| () do dy
RN xY RN XY

< e“Yugt = ugll L@y ey (v))» (44)

where ¢ € C*®°(RV) is a cut-off function satisfying the same hypotheses as in the previous subsec-
tions.

Consequently, the sequence (u,)nen is a Cauchy sequence in L2, ([0, 00), LY (RN x Y, ((z)dzdy));
thus there exists a function u € L2, ([0, 00), L} (RN x Y, {(x)dx dy)) such that u, converges towards
was n — oo in L2 ([0,00), LY (RY x Y, ((x)dx dy)). Moreover, the limit u is independent of the
chosen sequence ufj thanks to (44): indeed, let v, w{ be two sequences converging towards g in

LY (RN, Cper(Y)), and giving rise to functions v and w respectively. We construct the sequence

n_ Jug if nis even,
0 wh if n is odd.

Then the sequence uf converges towards ug in L'(RY,Cper(Y)), and thus the corresponding se-
quence u,, converges towards u, while uy,, converges towards v and ug,+1 towards w. By uniqueness
of the limit, u = v = w.

Oun the other hand, since the sequence f€ = x(&,u®) is bounded in L°°, there exists a sequence
(ek)ren of positive numbers, ¢, — 0, and a function f € L*°([0,00) x RY x Y x R), such that

X(&ut (¢, 2)) 28 f(t,2,y,€).

Now, for all k,n € N,

X (&5 u™) = X(& urf ) oo ([0,00), 1 ®N+1)) < MU0 — ug || L1 &N e (V)5
and for all n € N, since x(&,u) = le<y, — le<o, we have, as k — oo,

2 sc.

X (&) = x(&, un)-
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Let ¢ € Dper([0,00) x RN x Y x R). According to the definition of two-scale convergence,

/ / D(E* (1,2)) — x(Ech (t,2))] (t,x,x,f) dt de dé —
0o JrN+1 €k
- / / (6 2,9,€) — X(Eoun(t,,9))] 0 (2, €) dt da dy de.
0 RN xY xR

And for all £ € N, the following inequality holds:

/ / [X(& u (8, 7)) — x (&, usk (£, 2))] ¢ (t,x, l’,s) dt dx dg\ <
0 RN+1 €k
< 1@l L1([0,00), Lo (&Y x ¥ x®)) | [0 — U || L1 (&Y 0pr (V) -

Passing to the limit as k — oo, we deduce that for all n € N, ¢ € Dper([0,00) x RY x Y x R),

[ 0w - xEulta)] ooy dds df] <
0 RN xY xR

<|luo — ug |1 @~ cpee ) 1P L1 ([0,00), L @ x Y xR)-

Thus, we pass to the limit as n — oo and we infer that f = x (&, u(t,z,y)) almost everywhere.
Hence the limit is unique, and the whole sequence x(&,u®) converges (in the sense of two-scale
convergence).

Eventually, let us pass to the limit as n — oo in the limit evolution problem for x (&, u,). We
set f = x(§,u), and define the distribution

M= f +a(y,§) - Vaf.

Then M, — M in the sense of distributions, and it is easily checked that inequality (19) is
preserved when passing to the (weak) limit. Thus M satisfies (19).

In the divergence-free case, the main difference between the L and the L' setting, that is,
Theorem 2 and Theorem 3, lies in the fact that uniqueness for the limit system in the L! setting
seems difficult to derive; indeed, the proof of uniqueness in the L case uses several times the
fact that the distribution M has compact support. In a L! setting, this assumption ought to be
replaced by a hypothesis expressing that M vanishes as |{| — oo, in some sense. But it is unclear
how to retrieve such a property from the hydrodynamic limit (see section 4), for instance. The
above argument only proves that uniqueness holds among L' solutions which are obtained as the
limit of a sequence of L™ solutions. Thus we have left open the correct notion of limit system in
a weak L' setting, and the derivation of uniqueness therein.

Nonetheless, we wish to stress that the contraction principle in the L setting is sufficient to
ensure that the whole sequence (£, u®) converges, even if uniqueness for the limit system fails.

4. A relaxation model for the limit evolution problem

In this section, we exhibit another way of finding solutions of the limit system in the divergence-
free case. Indeed, the existence result of Theorem 1 was proved by passing to the two-scale limit
in (4), and it may be interesting to have another way of constructing solutions, which does not
involve a homogenization process.

Hence, we introduce a relaxation model of BGK type, in which we pass to the limit as the
relaxation parameter goes to infinity. The drawback of this method lies in the fact that the existence
of solutions of the limit system is not a consequence of the construction. Indeed, we shall prove that
if a solution of the limit system exists, then the family of solutions of the relaxation model strongly
converges towards it in the hydrodynamic limit. Hence the proof is not self-contained, because the
existence of a solution of the limit system is required in order to pass to the limit. Nevertheless,
the final result may be useful in other applications.
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In the whole section, the words “limit system” refer to the modified equations introduced in
Remark 1. In the divergence-free case, it is also slightly more convenient to work with the function
x(§,w), rather than 1..,. Hence a solution of the limit problem is a function g satisfying

Yo
; o (ai(y,£)g) =0, (45)
@Jrf:ai(y@ % =M, (46)
ot oz
Oeg=0(¢) —v(t,z,y,£), v=0, (47)

and M is such that for all ¢ € D(][0,00) x RY) such that ¢ > 0, the function M x; , ¢ belongs to
C([0,00) x RN L2(Y x R)), and

| Mt vso
Y xR
Vi € Liy. (Y x R), divy(ap) =0, and 0gp > 0.

(48)

4.1. A relazation model

The goal of this subsection is to introduce a system approaching (45)-(48). With this aim in
view, a relaxation model of BGK type is introduced, which takes into account the constraints of
the limit system, that is, equations (45)-(48). Let

M = ||ug|| o= (v xR)»
E:={f¢ L2(Y x R), Suppf CY x [-M, M]},

K:={p € E, divy(a(y,)¢(y.£§) =0 in D'},
K:=Kn{peE, ve M, Y xR), v>0, Oep =05 —v}.

per

Then E endowed with the usual scalar product on L? is a Hilbert space, and K is a nonempty
closed convex set in . Thus the projection P on K is well-defined.
The main result of this subsection is the following :

Proposition 2 Let \,T > 0 be arbitrary. Set
Xr :=C([0,T), L*(RY x Y x Ry))

and
fO(xayvg) :X(€>u0(‘r7y))7 (xayvg) GRN XY xR,

Then there exists a unique solution fy € X of the equation

{atfk“i’a(y,g)'vsz‘i’)\fk_)\,])(fk)a t>07 (it,y,f)GRNXYXR, (49)
It =0,2,y,8) = folz,y,8).
The function fy has the following properties :
1. For almost every t,x,y,§&,
Sgn(€>f)\(t7$,y,§) = |f)\(tam7y7£)| S 1
2. L? estimate: for all X > 0,
[[fxllxr < [luollLr @y xvy- (50)

3. Strong continuity at time t = 0: there exists a function w : [0,00) — [0,00), such that limy+ w =
0, and such that for all A >0, t > 0,

Ax(®) = follLr @y xy xr) < w(t). (51)
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4. Fundamental inequality for My := AX(P(fx) — f>): for all g € K, for almost every (t,x),

M (P(fx) —9) <0. (52)

Y xR

In equation (49), the projection P acts on the variables y, £ only; since f is a function of ¢, z, y, £,
P(f) should be understood as

,P(f)(taxa ) = P(f(taxa ))v

and the above equality holds between functions in L?(Y x R), almost everywhere in ¢, z.

Proof. First step. Construction of fy. The existence and uniqueness of fy follows from a fixed
point theorem in X,. We define the application ¢ : Xy — Xp by ¢ér(f) = g, where g is the
solution of the linear equation

{i%g +a(y,€) - Veg +Ag = AP(f),
g(t = O,x,yf) = X(Ev’uO(I?y))

The existence and uniqueness of g follow from well-known results on the theory of linear transport
equations (recall that a € Wwlee (Y x R)). Moreover, if f1, fo € Xp and g; = or(fi), i = 1,2,

per,loc
then g = g1 — go is a solution of

{ Org +a(y,§) - Vag + Ag = NP (f1) — P(f2)],
g(t=0,2,9,£) =0.

Multiplying the above equation by g, and integrating on RY x Y x R, we obtain the estimate

1d
3 IO cwsy + IOl cvwmy <A [ [PUR) = Pl
RN XY xR

Recall that the projection P is Lipschitz continuous with Lipschitz constant 1. Thus
1 1
/ [P(f1) = P(f2)lg < SIP((1) = POl 72(@n xy wmy + S I9ONL2 @ v xmy
RN xY xR

1 1
< S = BRI O @r sy ) + 59O 2@y v xm)-

Eventually, we obtain

d
a”g(t)H%Z(RNxYxR) F IO 2@y xy xmy < M= F2) Ol 7@y oy xry < Al = fall5p-

A straightforward application of Gronwall’s lemma yields

llg1 — g2llxr < V1 —e 2T f1 — fallxp-

Thus ¢ is a contractant application and has a unique fixed point in X, which we call f).

Second step. L* estimate. Multiplying (49) by f and integrating on RY x Y x R, we infer
1d 9 9
iﬁnf)\(t)”L?(RNxYxR) + /\‘|f>\(t)||L2(RN><Y><R) <A BN xy R,P(fk)f%
XY X
Notice that 0 € K; thus the Lipschitz continuity of P entails that for almost every ¢,z

PN 2| < IAE2)g -

Hence, using the Cauchy-Schwartz inequality, we deduce that ¢ — [|fx(f)||L2®~ xy xr) is nonin-
creasing on [0, T]. The equality

RN xY xR RN xY

RN XY xR

then yields the desired result.
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Third step. Compact support in &. Let us prove now that fy(-,§) = 0if |{] > M: let ¢ € D(R) be
an arbitrary test function such that ¢(£) = 0 when |{| < M. Then P(f))¢ = 0 since P(f\) € K,
and thus fy is a solution of

0
5 @) +a- Ve (fap) +A(fap) =0,

(frp) (t=0,2,y,§) = 0.
Hence (frp)(t,z,y,&) = 0 for almost every ¢, z,y, &, and fr(-,€) =0if || > M.
Fourth step. Sign property. We now prove the sign property, namely

sgn()fa=1[fal <1 ae.

This relies on the following fact: if g € K, then sgn(£)g(y, &) € [0, 1] for almost every y, £. Indeed,
9(-,§) =01if £ < —M, and thus if —M < £ <0,

13
9(y.6) = — / € de' <o

Hence g(y,-) is non-positive and nonincreasing on (—oo,0). Similarly, g(y,-) is non-negative and
nondecreasing on (0,00). And if £ < 0 < ¢’, then

o
9(y,€) —9(y,§) =1 _/s v(y,w) dw < 1.

Hence the sign property is true for all functions in K.
Multiplying (49) by sgn(€), we are led to

% (sgn(§)fx) + aly, ) - Ve (sgn(§)fr) + A(sgn(€) fr) = AP(f1) € [0,A].

At time ¢ = 0, sgn(§) fr(t = 0) = |x(&, uo)| € [0, 1]. Thus, using a maximum principle for the linear
transport equation above, we deduce that the sign property is satisfied for f).

Fifth step. Uniform continuity at time t = 0. Let § > 0 be arbitrary, and let fJ := fo*, 6°, with 6°
a standard mollifier. Then f(z) € K for all x € RV, and thus f\ — fJ is a solution of the equation

0

En (A= 10) +ay,8) - Va (= L) + XA = £0) = A (P(fr) = P(fD)) — ay, &) - (fo *x VO°) .

Multiply the above equation by (fx — f) and integrate on RY x Y x R. Using once more the
Lipschitz continuity of the projection P, we obtain

1d 2
5% Hf/\ - ngL2(RN><Y><]R) < HaHL“(YX(fM,M))Hf/\ - fg||L2(RN><Y><R)||f0||L2(RN><Y><]R)||v‘95||L1

d C
dt [ £x = ngLz(RNxYle) =5

As a consequence, we obtain the following estimate, which holds for all ¢ > 0, A > 0 and § > 0

Ct
Hf/\(t) - ngL2(RN><Y><R) = i + Hfo - ngL2(RN><Y><]R) ‘

Hence the uniform continuity property is true, with

, Ct
w(t) == ;I;% ((5 +2||fo - fg||L2(RN><Y><R)> :

Sizth step. Inequality for M. Inequality (52) is merely a particular case of the inequality

(P(f)=fP(f)—9)e <0
which holds for all f € F, for all g € K.
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4.2. The hydrodynamic limit

In this subsection , we prove the following result :

Proposition 3 Let (f))x>o be the family of solutions of the relazation model (49), and let f(t) =
X(&,u) be the unique solution of the limit system (45)-(48) with initial data x (&, uo(z,y)). Then as
A — 00,
fr—f inL*((0,T) x RY x Y x R).
The above Proposition relies on an inequality of the type
da
dt Jrnyxy xr

[fa = fIP < 7).

with 75 (t) — 0 as A — oo. The calculations are very similar to those of the contraction principle
in the previous section; the only difference lies in the fact that f) and f are not solutions of the
same equation.

Before tackling the proof itself, let us derive a few properties on the weak limit of the sequence
fx. Since the sequence fy is bounded in X7 C L?((0,7) x RY x Y x R), there exists a subsequence,
which we relabel fy, and a function g € L?((0,7) x RY x Y x R) such that f\ weakly converges to
g in L2. Moreover, the sequence P(fy) is bounded in L2((0,T) x RY x Y x R), for all 7' > 0. Hence,
extracting a further subsequence if necessary, there exists a function h € L2((0,T) x RN x Y x R)
such that P(f\) weakly converges towards h as A — oco. Notice that the convex set K is closed for
the weak topology in L2. Consequently, h(t,z) € K for almost every ¢, z. And we have

P -h=0(5),

where the O is meant in the sense of distributions. Hence, g = h, and in particular, we deduce that
g(t,x) € K for almost every (¢, z).

We are now ready to prove the contraction inequality; consider a mollifying sequence 6° as in
the previous section, and set fo = f ., 6%, f3" = fx %1, 0° . Then

O f° +ay,&) - Vi f® =
Ofy +aly,€) - Vil = M§.

Let us multiply the first equation by sgn(¢) — 2f§,, the second by 2(f§/ — f?), and add the two
identities thus obtained; setting Ff’él =sgn(&)f° + \ff\s'|2 — 2f5ff\s', we have

O +a(y,€) - Vo) = M (sen(e) — 2] ) +2M5 (F - 5.

We integrate over (0,t) x RV x Y x R and obtain
5,6 ! :
Lo e dragas= [ [ M (suie) - 21}
RN xY xR RN xY xR

+2// M (S = 1)

RN XY xR

+/ F2O(t = 0,2,y,€) do dy d.
RN XY xR

We now pass to the limit as ¢’ — 0, with all the other parameters fixed. Notice that

‘Sl’iino/ot /RNxYxRMi/(f/\/ - fé) - / /RNXYXR A= 4 )
_A/ /]RN ><Y><]R(f}\ P
/ /RNXYXR (P =1
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since fO(t,x) € K for all t,z. The passage to the limit in F/‘\;"S,(t = 0) does not rise any difficulty
because of the strong continuity of the functions f at time ¢ = 0. Hence, we retrieve

/RNMR {(|f5(t)} - |f5(t)|2) + |70 - fk(t)|2}

< /O /RNMRM& (sgn(€) — 2£»)
+/RNXYXR{(|f‘5(t =0)| - [/t = 0)]2) +|f(t=0) - X(f,uo)’2}7

and thus, integrating once again this inegality for ¢ € [0, T7,

[ Lo A1) + - 5}

T t
6 _
<[al[ [ e -2n0) ol
Sy 8 — 2 Sir — ) _ 2
1 [ {(Ire=0)l =15 = 0f) + |7 = 0) - xtew)|}
We now pass to the limit as A — oo, with 6 > 0 fixed. Then

. . 2 2
h,\nilgngfA - féHLQ((QT)X]RNXYx]R - ||g - f6||L2((07T)XRNXYXR’

and

lim OTdt [ / t Lo M) (sn(6) — 21(5) ds]

A—00

- / " [ / t / o M) ()~ 20() ds} <.

Thus, we obtain, for all § > 0
19 = 1122 oy sy sy < T/RNMR{U% =0)] = | £t = 0)[" + £t = 0) — x(&,w0)[*}.

We have already proved in the previous section that the family f°(¢ = 0) strongly converges towards
X(&,up) as ¢ vanishes, due to the continuity assumption at time ¢ = 0. Hence, we obtain in the
limit
2
llg — f|‘L2((07T)><RN xyxr <0,

and consequently, g = f. Hence the result is proved.

5. The separate case : identification of the limit problem

This section is devoted to the proof of Proposition 1. Thus we focus on the limit system in the
case where the flux A can be written as

Ay, &) = ao(y)g(€), with divyae =0.

The interest of this case lies in the special structure of the limit system; indeed, we shall prove
that the function u, which is the two-scale limit of the sequence u®, is the solution of the scalar
conservation law (20). In view of Theorem 1, we wish to emphasize that Proposition 1 implies in
particular that the entropy solution of (20) satisfies the constraint equation

divy (ao(y)g(u(t,z;y))) =0

for almost every t > 0,2 € R"; this fact is not completely obvious when g # Id. We will prove in
the sequel that u(t,x) actually belongs to the constraint space Ky for almost every ¢, x.
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Before addressing the proof of Proposition 1, let us mention that the limit problem (20) is not
the one which is expected from a vanishing viscosity approach. Precisely, for any given § > 0, let
uj be the solution of

Opu§ + div, A (? u§> —edAu§ =0,

with the initial data u§(t = 0,2) = ug (x,x/¢). Then for all € > 0, u§5 — u® as § — 0; moreover,
the behavior of u§ as ¢ — 0 is known for each 6 > 0 (see [5,6]). In the divergence-free case, for all
6 >0,

. e - . 1
Ehl% Us = ’U,(t, ‘T) n Lloc»

where @ is the entropy solution of

{&u +div,((a) g(a)) =0, t>0, v €RY,
a(t=0,2) = (ug(z,-)), xRN

Hence, it could be expected that the limits € — 0 and 4 — 0 can be commuted, that is

lim lim u§ = lim lim wu§,
e—06—0 6—0e—0
which would entail

lim u® = 4.
e—0

In general, this equality is false, even in a weak sense: a generic counter-example is the one of
shear flows (see for instance the calculations in [9]). Indeed, if N = 2 and A(y, &) = (a1(y2)§,0),
then equation (20) becomes

Opu + a1 (y2)0p,u = 0, t>0, r€R? yel0,1]?
u(t:()vmay):uo(mlax27y2)7 x€R2, (/S [071]2

It is then easily checked that in general, the average of u over Y = [0, 1]? is not the solution of the
transport equation
O+ {(a1) Oz, u = 0.

We now turn to the proof of Proposition 1. In view of Theorem 1, it is sufficient to prove that
the entropy solution of (20) belongs to Ky for a.e. ¢, z, or in other words, that K is invariant by the
semi-group associated to equation (20). We prove this result in the slightly more general context
of kinetic solutions. The core of the proof lies in the following Proposition:

Proposition 4 Let ug € L*(RY, L>(Y)) such that ug(z,-) € Ko for almost every x € RY.
Let v = v(t,z;y) € C([0,00); LY(RYN x Y)) be the kinetic solution of

{wwmw+mw@mwwwmw»=@t>axeRMyeK (53

v(t =0,73y) = uo(z,y).
Then for almost every t > 0,7 € RV, v(t,z) € K.

Remark 7 Let us recall that the function v is the kinetic solution of (53) if there exists a non-
negative measure m € C(Re, ML([0,00) x RN x Y) such that the following properties hold:

— The function f1(t,z,y,&) = x(&,v(t,x;9)) is a solution in the sense of distributions of

{&gfl—l—do(y)-vzflg'(f)zﬁgm, t>0 RN, yeY, £€R,
Lt =0,2,9,8) = x(& uo(z, y));

— There exists a function p € L*>°(R) such that

[ msygdayaspe) veer
0 RxY

lim p(€) =0.

|§]—o0
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Proof. First, let us recall (see [23,24]) that for all T' > 0,
ft= Jim fy in C([0,T); L*(RY x Y x R)),

where f\ = fi(t,x,y,&) (A > 0) is the unique solution of the system

Ofx+ao(y) - Vafr g'(§) + Afa = Ax (& un),
wrltir) = [ Plta.€) e, (55)
It =0) = x(& uo).

Moreover, for every A > 0, uy is the unique fixed point of the contractant application

C((0,T); LNRY x ¥)) — C((0,T); L*(®Y x Y))

Uy — Uz

P
where uy = fg f and f is the solution of

Of +ao(y)  Vaf ¢ (&) + A = Ax(&,u), (56)
f(t = 0) = X(57U0)~

Thus, it is sufficient to prove that the space
Ty = {ueC([0,T); L*RY x Y));u(t,z) € Ky a.e}

is invariant by the application ¢y.
First, let us stress that for all u € L*(Y),

u €Ky < divy(a(y)x(&u)) =0in D'(Y x R). (57)

Indeed, if u € Ko, then for all § > 0, set us = u * 6°, with #° a standard mollifier. The function wu;
is a solution of

divy(agus) = s,
and the remainder 75 vanishes strongly in L'(Y) (see the calculations in the previous sections).
Since the function us is smooth, if G € C1(RY), we have

divy(agG(us)) = G'(us)rs.
Passing to the limit as § vanishes, we infer div,(agG(u)) = 0 for all G € C'(RY). At last, taking a
sequence of smooth functions approaching x (&, u), we deduce that div,(aox(§,u)) = 0in D), (Y x

per

R). Conversely, assume that div,(aox(€,u)) = 0; integrating this equation with respect to ¢ yields
u € Ky. Hence (57) is proved.

Now, let us prove that the space Zy is invariant by the application ¢y. Let u; € C([0, T]; L' (RY x
Y')) such that uq (¢, z) € Ko almost everywhere. Then

divy (ao(y)x (&, wi(t,2,y))) = 0.

Let f be the solution of (56); since ao € KJ', the distribution div,(aof) satisfies the transport
equation

3, (div(aof)) + ¢'(€)ao(y) - Va (div(aof)) + Adiv(agf) =0, ¢>0, zeRY, y €V, £€R,
and div(agf)(t = 0) = 0 because ug(z) € Ko almost everywhere. Hence

div,(ao(y) f(t,2,9,€) =0 in .

Integrating this equation with respect to £ yields uy € Ky almost everywhere.
Consequently, for all A > 0, uy (¢, z; ) € Ko for almost every ¢, x. Passing to the limit, we deduce
that v(t, z;-) € Ko almost everywhere. Hence Proposition 4 is proved.

We now turn to the proof of Proposition 1: setting b(y) = ao(y) — a@o(y), we have

Ot +ao()Vaf'g' (§) = 9em — b(y)Vaf'g' (§) = M.

If ug € L= (RY), then v € L>=([0,00) x RY x Y), and it is easily checked that f! and M satisfy
the compact support assumptions. According to Proposition 4, f! also satisfies (45), and thanks
to the structure of the right-hand side, the distribution M; satisfies (48). Thus f! is the unique
solution of the limit system, and Proposition 1 is proved.
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6. Further remarks on the notion of limit system

Here, we have gathered, by way of conclusion, a few remarks on the limit evolution system
introduced in Definition 1. The main idea behind this section is that the limit system is not unique
(although its solution always is), and thus several other relevant equations can be written instead
of (10). Unfortunately, there does not seem to be any rule which would allow to decide between
two limit systems.

Let us illustrate these words by a first series of examples: assume that the flux is divergence
free, and let

a/(y7£) = (al(y7€)’ e 7aN(y7£)) € RNv (yvf) €Y X R,
K:={f € LL.(Y x R), div,(a’f) =0 in D'}.

We denote by P the projection on K in L{ (Y x R). Precisely, consider the dynamical system
X(t,y; &) defined by _
X(ty;:8) = a'(X(t,9:6),6), >0,
X(t=0,y8)=yeY.
Then for all £ € R, the Lebesgue measure on Y is invariant by the semi-group X (¢; &) because
a'(-,€) is divergence free for all £&. Hence, by the ergodic theorem, for all f € L (Y x R) there
exists a function P(f) in L{ (Y x R), such that

loc

1 T
PN@.6) = Jim £ [ f(X(ty0).€) ar

and the limit holds a.e. in y,£ and in Y x (=R, R) for all R > 0.
For 1 <i < N, set a; := P(a;). Then if f is a solution of the limit system, f also satisfies

Of +aly,€) - Vof =M
and f, M satisfy (9) and (11) - (14). Indeed,
M =M+ a(y,€) — d (4, 6] Vaf

and the term [a(y,&) — a/(y,€)] - Vo (f %2 ©)(t, 7, 5,&) belongs to K+ for all ¢,z and for all ¢ €
D([0,00) x RY). Of course, as long as a is sufficiently smooth, say a € VV&;COO(RNH), uniqueness
holds for this limit system (the proof is exactly the same as the one in section 3). Thus this
constitutes as legitimate a limit system as the one in Definition 1. In fact, in the separate case,
Proposition 1 indicates that the above system seems to be the relevant one, rather than the one in

Definition 1. Notice that the distribution M satisfies the additional property
M, ¢t x) € KT Vi, .
Let us now go a little further: let § € C*(R) such that 0 < 6 < 1, and let

ag(y,€) = 0(&)a’(y,€) + (1 = 0(&))aly, §).

Then f is a solution of

atf + a@(y7£) . Va:f = M97

for some distribution My satisfying (14). Thus this constitutes yet another limit system which has
the same structure as the one of Definition 1. Hence the limit system is highly non unique, and
it must be seen as a way of identifying the two-scale limit of the sequence f¢, rather than as a
kinetic formulation of a given conservation law, for instance. Let us also emphasize the following
fact: consider the solution v = v(¢, x,y) of the scalar conservation law

{ v + div, Ay, v) = 0,
’U(t = Oa Iay) = UO(Iay)a

where the flux A is such that (95141-(21,5) = a;(y,€). Then, in general, the function 1¢<, is not a
solution of the limit system, except in the so-called “separate case” described in Proposition 1.
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Indeed, the function v is not a solution of the cell problem in general, even if ug is. In other words,
the set K is not invariant by the evolution equation

N

i=1
where m is a nonnegative measure and g = 1¢,.

Let us now assume that the flux A is not divergence free. Then there are cases where a different
notion of limit problem can be given: assume that there exists real numbers p; < po, and a family
{v(-,P)}p <p<p,, Which satisfies the following properties:

1. The function (y,p) — v(y, p) belongs to L>=(Y x [p1, p2));
2. For all p € [p1, p2), v(-,p) is an entropy solution of the cell problem; in other words, there exists
a nonnegative measure m(y, &; p) such that f(y,&;p) = lecy(y,p) is a solution of

; aiyz (az(yvg)f) + (r“)if (aN+1(y’§)f) _ 875

m;

3. For all p € [p1,p2], (v(-,p))y =0;
4. The distribution d,v is a nonnegative function in L*(Y x [p1, p2]); this implies in particular that
for all couples (p,p’) € [p1, p2)? such that p > p’, for almost every y € Y,

v(y,p) > v(y,p).

Under these conditions, a kinetic formulation for equation (1) can be derived, based on the
family v(z/e, p) of stationary solutions of (1), rather than on the family of Kruzkov’s inequalities.
This kind of construction was achieved in [7] in a parabolic setting, following an idea developed
by Emmanuel Audusse and Benoit Perthame in [3]; these authors define a new notion of entropy
solutions for a heterogeneous conservation law in dimension one, based on the comparison with
a family of stationary solutions. Let us explain briefly how the kinetic formulation for entropy
solutions of (1) is derived: let u® be an entropy solution of (1). Define the distribution m® €
D/((0,50) x BY x (p1,p2)) by

5 N a € T 8 . E ) _ . E f
mettan) =~ { g (=0 (20)), g [ (4 (E0) =4 (Zo (Z0)))] |
(58)
Then according to the comparison principle (which was known by Kruzkhov, see [16,17]), m® is a
nonnegative measure on (0,00) x RY x [py, p2]. Now, set

fet,z,p) = 1U( p)<u€(t,x) € LOC([O’OO) x RN x [th])o

x
R

Thanks to the regularity assumptions on the family v(-, p), we can differentiate equality (58) (which
is meant in the sense of distributions) with respect to p, and we are led to

o (1 (50)) + g (o (For) s (B0 (50) = - )

This equation is in fact the appropriate kinetic formulation in the heterogeneous case; its main
advantage over equation (4) is the absence of the highly oscillating term

1 x

19 [ (7’ ) 1 u} .

- ¢ |ON+1 - §) Lec
Notice that for all p € [py, pa],

vy (g0t =0 0 Dp (V). (60)

This equation is derived by differentiating equation

divyA(y,v(y,p)) =0
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with respect to p. Thus, if we set

a(y,p) == (%g; P) a(y,v(y,p)),

the vector field @ € L'(Y x [p1,p2]) is divergence-free, and the same kind of limit system as in the
divergence free case can be built. Of course, the interest of such a construction lies in the simplicity
of the structure of the limit system in the divergence free case.

Definition 3 Let f € L>([0,0), L*(RY x Y x R)), ug € L' N L=(RN x Y). It is said that f is a
generalized kinetic solution of the limit problem associated with the family v(-,p) if there exists a
distribution M € D,,,.([0,00) x RY x Y x R) such that f and M satisfy the following properties:

1. Compact support in p: there exists (p},ph) € [p1,p2]? such that p; < p} < ph < pa, and
SuppM C [0,00) x RN x Y x [p}, ph;
ftzy,p)=1ifpr<p<py, [f(t,z,yp)=0ifpy<p<ps
2. Microscopic equation for f: f is a solution in the sense of distributions on'Y x (p1,p2) of
divy(a(y,p)f(t 2, y,p)) = 0. (61)

3. Ewvolution equation: the couple (f, M) is a solution in the sense of distributions on [0,00) X
RY x Y x (p1,p2) of

{at(vp(yvp)f) + d(yvp) ' vzf = Mv

62
f(t = 07%3/7}7) = 1u(y,p)<uo(x,y) = fO(xa yvp); ( )

In other words, for any test function ¢ € Dper([0,00) x RN x Y x (p1,p2)),
/ / [t 2y, p)vp(y, p) {0e0(t, 2y, p) + aly, v(y,p)) - Vao(t, z,y,p)} dt do dy d§ =
0 RN xY xR

— (. Mip / Lo (1) <as oy 0o (31 P)O(E = 0, 2, . p) e dly dE.
RN xY xR

4. Conditions on f:

0< flt,z,y,6) <1 a.e, (64)
1 T
= [ ) = Bl o 5 30 (65)

5. Condition on M: for all o € D([0,00) x RY such that p < 0, the function M x; . o belongs to
C([0,00) x RN LYY x R)), and

{ fo]R (M *t,x 30) (t7 ) < 07

Vi € L2 (Y x R), divy(aw) =0, and detb > 0. (66)

loc

We now state without proof a result analogue to Theorems 1, 2 :

Proposition 5 Let A € W2 (Y x R). Assume that a € CL_ (Y x R) and that & € W-H(Y x

per,loc per

(p1,p2)). Let ug € L¥(RN x V)N LL (RN, Cper(Y)) such that ug(x,-) is an entropy solution of the

loc

cell problem for almost every x € RY. Assume furthermore that there exists py < ph in (p1,p2)>
such that

vy, ph) < uo(z,y) < v(y, py),
and let
fo(z,y,p) == Ly(y,p)<uo(@,y)
Then the following results hold :
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. There exists a unique generalized kinetic solution f of the limit problem associated with the

family (v(-,p))p,<p<p, with initial data fo. Moreover, there ezists a function u € L ([0, 00) X
RN xY) such that

ft2,y,p) = Loy py<u(tay) O-€

. Let vt € L>®([0,00) x RY) be the entropy solution of (1) with initial data ug (z,x/c). Let

f(t,2,y,p) = Ly p)<u(tzy) e the unique solution of the limit problem. Then for all regular-
ization kernels ©° of the form

1 T
é _ e N
with p € DRY), [ =1,0 < ¢ <1, we have, for all compact K C [0,00) x RV,

= 0. (67)

lim lim =
L1(K)

§—0e—0

U (t,x) — u kg ©° (t,x, E)‘
€

Hence a whole variety of limit systems can be given, depending on the choice of the family of

solutions of the cell problem. However, it is not obvious that any given system is “better” than
another one. But the important result, as far as homogenization is concerned, is that all systems
have a unique solution.
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