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Abstract

This article is concerned with the study of entropy solutions of the scalar conserva-
tion law ∂tu + divxA(x, u) = 0. The main novelty of our work lies in the fact that
the flux A is allowed to depend on the space variable x. We introduce a kinetic for-
mulation for this equation, proven to be equivalent to the usual entropy inequalities.
We check the existence and uniqueness of weak L1 solutions of the scalar law.

Résumé

On étudie ici les solutions entropiques de lois de conservation scalaires hétérogènes
∂tu+divxA(x, u) = 0. L’apport principal de notre étude vient de la forme plus géné-
rale du flux A, qui dépend explicitement de la variable d’espace x. On commence par
introduire une formulation cinétique de la loi de conservation, dont on montre qu’elle
est équivalente aux inégalités entropiques habituelles. On vérifie ensuite l’existence
et l’unicité de solutions faibles L1 de la loi de conservation.
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1 Introduction

We are interested in the properties of scalar functions u(t, x) solutions in the sense
of distributions of the multi-dimensional scalar conservation law :

∂u

∂t
(t, x) +

n∑
i=1

∂

∂xi

Ai(x, u(t, x)) = 0, t ≥ 0, x ∈ Rn,

u(t = 0, x) = u0(x) ∈ L1(Rn) ∩ L∞(Rn).

(1)

with n ∈ N arbitrary.

Many fundamental contributions to the theory of conservation laws already exist
(see for instance [1], [2], and the references therein), mostly in homogeneous cases,
i.e. when the flux A does not depend on the space variable x.

Following an idea of P-L Lions, B. Perthame and E. Tadmor ([3,4]; see also the pre-
sentation of B. Perthame in [5]), we introduce a kinetic formulation for the problem
(1) and we prove the existence and uniqueness of entropy solutions. The main contri-
bution of this work is the more general form of the flux A: we wish to emphasize the
fact that the spatial dependance of the flux A will require to modify substantially
the kinetic formulation developed in the homogeneous case. From a physical point
of view, the x-dependance of the flux A accounts for spatial heterogeneities.

Let us precise the regularity assumptions we will need on the flux Ai : the minimal
hypotheses are

ai(x, v) :=
∂Ai

∂v
(x, v) ∈ L∞loc(R;L∞(Rn)), (2)

an+1(x, v) := −
n∑

i=1

∂Ai

∂xi

(x, v) ∈ L∞(Rn+1); , (3)

an+1(x, 0) = 0 ∀x ∈ Rn. (4)

The proofs of existence and uniqueness require more regularity, namely

ai ∈ C1(Rn+1), ∂jai ∈ L∞loc(R;L∞(Rn)), 1 ≤ i, j ≤ n+ 1, (5)
∃C > 0, ∀(x, v) ∈ Rn+1, |ai(x, v)| ≤ C(1 + |x|+ |v|), 1 ≤ i ≤ n+ 1 (6)

for the proof of existence and

∂jai ∈ L1
loc(Rn+1) 1 ≤ i, j ≤ n+ 1 (7)

(with the convention ∂j = ∂xj
for 1 ≤ j ≤ n, and ∂n+1 = ∂v) for the proof of

uniqueness.

These assumptions could probably be weakened, but are rather convenient to work
with in a first step. Notice that condition (4) is not very restrictive : indeed, if (4)
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is false and u is a solution of (1), then setting Bi(x, v) = Ai(x, v) − Ai(x, 0), u is a
solution of

∂u

∂t
+

n∑
i=1

∂

∂xi

Bi(x, u(t, x)) = an+1(x, 0);

B satisfies assumption (4); thus, the only change in the analysis is the addition of
a source term. Remark also that (4) is satisfied if and only if the null function is a
solution of (1).

We denote by a = a(x, v) the vector valued function a := (a1, · · · , an, an+1). Notice
that divx,va = 0. This divergence-free property will be fundamental in the proofs
and, in some sense, replaces the fact that a is independant of x and an+1 = 0 in the
homogeneous case.

The organization of the article is as follows: in the second section, we recall the
definition of an entropy solution and show the equivalence between the family of
entropy inequalities and the kinetic formulation. This equivalence allows us to de-
fine a weaker notion of solutions, called kinetic solutions. In the third section, the
existence of kinetic solutions of (1) is proved. In the fourth and last section, we show
the uniqueness of kinetic solutions.

2 Entropy solutions and kinetic formulation

2.1 Different notions of solutions - Main results

Let us recall the notion of entropy solution introduced by Kruzkhov (see [6,7]):

Definition 1 A function u ∈ C(R+, L
1(Rn)) ∩ L∞loc(R+, L

∞(Rn)) is an entropy so-
lution of the system (1) if it is a solution of (1) in the distributional sense, and if
it satisfies the following inequality for all convex functions S ∈ C2(R) :

∂S(u)

∂t
+

n∑
i=1

∂

∂xi

ηi(x, u) +
n∑

i=1

∂Ai

∂xi

(x, u)S ′(u)−
n∑

i=1

∂ηi

∂xi

(x, u) ≤ 0, (8)

where
ηi(x, v) :=

∫ v

0
ai(x, v

′)S ′(v′) dv′. (9)

The inequality (8) will be called entropy inequality, and the whole family of entropy
inequalities will be refered to as entropy formulation.

The following result, due to Kruzkhov (see [6,7]) states that the Cauchy propblem
is well-posed in this class of solutions:

Proposition 2 Let u0 ∈ L1(Rn) ∩ L∞(Rn).
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Under the assumptions A ∈ C(Rn+1), ai ∈ C(Rn+1)∩L∞loc(R, L∞(Rn)) for 1 ≤ i ≤ n,
an+1 ∈ L∞loc(R, L∞(Rn)), ∂ai

∂xj
∈ C(Rn+1) (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n), there exists

a unique entropy solution u ∈ C([0,+∞), L1(Rn)) ∩ L∞loc(R+, L
∞(Rn)) of the scalar

conservation law (1) with initial data u0.

Moreover, if u, v are entropy solutions with initial data u0 and v0, then u and v
satisfy the L1 contraction property :

||u(t)− v(t)||L1 ≤ ||u0 − v0||L1 ∀t ∈ R+.

Our aim in this paper is to give a better understanding of the entropy solutions of
(1) by introducing a kinetic formulation. This will allow us to generalize Kruzkhov’s
result and to develop a pure L1 setting for solutions of (1).

Define χ : R2 → {1,−1, 0} as follows :

χ(v, u) :=


1 if 0 < v < u,

−1 if u < v < 0,

0 otherwise.

Our first result is the following:

Theorem 3 Let u ∈ C([0,+∞), L1(Rn)) ∩ L∞loc((0,+∞), L∞(Rn)). Under the as-
sumptions (2), (3), (4), u is an entropy solution of (1) if and only if there exists
a nonnegative measure m(t, x, v) such that m((0, T ) × Rn+1) < +∞ for all T > 0,
and such that χ(v, u(t, x)) satisfies the following kinetic equation in the sense of
distributions on R+ × Rn+1: ∂tχ(v, u(t, x)) + divx,v [a(x, v)χ(v, u(t, x))] = ∂vm(t, x, v),

χ(v, u(t = 0, x)) = χ(v, u0(x)).
(10)

We shall say that equation (10) is the kinetic formulation of the scalar conservation
law (1).

Remark 4 The kinetic formulation of equation (1) will prove to be much more
handy than the equation itself due to the linearity of equation (10). However, it
should be noticed that the nonlinearity is somewhat hidden in equation (10). Note
indeed that in addition to the introduction of an extra “fluctuation” variable v, the
function χ is nonlinear. The measure m is called the entropy defect measure and
accounts for the lack of regularity of u: m vanishes on sets of R+ × Rn on which u
is smooth (say W 1,1 for instance).

This result allows us to define a weaker notion of solution:
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Definition 5 Let u ∈ C([0,+∞), L1(Rn)). u is a kinetic solution of (1) if there
exists a nonnegative measure m such that m((0, T )×Rn × (−R,R)) is finite for all
T,R > 0 and such that (10) is satisfied in the sense of distributions.

We will prove that the Cauchy problem is also well-posed in this class of solutions:

Theorem 6 Let u0 ∈ L1(Rn). Under the assumptions (2), (3), (4), (5), (6), there
exists a kinetic solution u ∈ C([0,+∞), L1(Rn)) of the scalar conservation law (1)
such that u(t = 0) = u0.

Moreover, under assumptions (2), (3), (4), (7), if u1, u2 are two kinetic solutions of
(1) such that for all T > 0

∫ T

0

∫
Rn+1

|ai(x, v)||χ(v, uj(t, x))| dx dv dt < +∞ 1 ≤ i ≤ n, j = 1, 2,

then the L1 contraction property holds:

||u1(t)− u2(t)||L1(Rn) ≤ ||u1(t = 0)− u2(t = 0)||L1(Rn) ∀t > 0. (11)

Remark 7 In fact, uniqueness will be proved in a broader class of solutions, called
generalized kinetic solutions (see section 4).

Remark 8 Pushing further the equivalence between entropy and kinetic solutions,
it can be proved that u ∈ C([0,+∞), L1(Rn)) is a kinetic solution of (1) if and only
if u is a solution of (1) in the distributional sense and if there exists a nonnegative
measure m0(t, x, v) such that the following equality holds for all functions S ∈ C2(R)
such that S ′ has bounded support

∂

∂t
S(u(t, x)) +

n∑
i=1

∂

∂xi

ηi(x, u(t, x)) +
n∑

i=1

∂Ai

∂xi

(x, u)S ′(u)−
n∑

i=1

∂ηi

∂xi

(x, u)

= −
∫

R
S ′′(v)m0(t, x, v) dv. (12)

In that case, m (the kinetic entropy defect measure) and m0 are equal, up to a
function of t, x.

The proof of this result is the same as the one of theorem 3, and is left to the reader.

In the following subsection, we prove theorem 3. Sections 3 and 4 are devoted to
the proof of theorem 6: more precisely, section 3 is concerned with the proof of the
existence, and section 4 with the one of uniqueness.
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2.2 Equivalence between the entropy and kinetic formulations - Proof of theorem 3

The equivalence of initial conditions is easily checked; concerning the equivalence of
the evolution equations, we define a distribution m which is a solution of (10), and
we prove that m is nonnegative and locally bounded if and only if u is an entropy
solution.

- First step: definition of m.

Let u ∈ C(R+, L
1(Rn)) ∩ L∞loc(R+, L

∞(Rn)). Define the distribution m(t, x, v) by

m(t, x, v) :=
∂

∂t

∫ v

0
χ(w, u(t, x)) dw +

∂

∂xi

∫ v

0
ai(x,w)χ(w, u(t, x)) dw +

+an+1(x, v)χ(v, u(t, x)), (13)

so that (10) is satisfied in the sense of distributions.

We multiply (10) by S ′(v), with S ′ ∈ D(R), and integrate with respect to v. We
shall use systematically the following easy fact∫

f ′(v)χ(v, u) dv = f(u)− f(0) ∀u ∈ R ∀f ∈ W 1,∞
loc (R). (14)

Taking f = S and f = ηi, and using the following identity (recall that (4) is satisfied)

∂Ai

∂xi

(x, v)S ′(v) =
∂ηi

∂xi

(x, v)−
∫

R
χ(w, v)an+1(x,w)S ′′(w) dw ∀(x, v) ∈ Rn+1

leads us to the following equation, which holds true as long as S ′ ∈ D(R) :

∂

∂t
S(u(t, x)) +

n∑
i=1

∂

∂xi

ηi(x, u(t, x)) +
n∑

i=1

∂Ai

∂xi

(x, u)S ′(u)−
n∑

i=1

∂ηi

∂xi

(x, u)

= −
∫

R
S ′′(v)m(t, x, v) dv. (15)

- Second step: If m ≥ 0 is a locally bounded measure, then u is an entropy solution
of (1).

Assume m is a nonnegative measure on R+ × Rn+1 such that∫ T

0

∫
Rn+1

m(t, x, v) dt dx dv <∞ ∀T > 0.

In the sequel, we will work on a compact time interval [0, T ], and we set

M = ||u||L∞((0,T )×Rn) <∞.
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First, let us generalize (15) to all S ∈ C2(R) subquadratic, i.e. such that S ′′ is
bounded. If S ∈ C∞(R) is subquadratic, we truncate S thanks to a cut-off function
φ ∈ C∞0 (R) s.t. φ(v) ≡ 1 for |v| ≤ 1 and φ(v) ≡ 0 for |v| ≥ 2: set φk(v) = φ

(
v
k

)
,

Sk = Sφk. Then Sk ∈ D(R), and we may write (15) for Sk.

But for k > M , Sk(u(t, x)) = S(u(t, x)) and ηk(x, u) = η(x, u) for almost every
(t, x). Thus, for k > M , on D′((0, T )× Rn), we have

∂

∂t
S(u(t, x)) +

n∑
i=1

∂

∂xi

ηi(x, u(t, x)) +
n∑

i=1

∂Ai

∂xi

(x, u)S ′(u)−
n∑

i=1

∂ηi

∂xi

(x, u)

= −
∫

R
S ′′k (v)m(t, x, v) dv. (16)

Then, we pass to the limit as k →∞ thanks to the bounds on S ′′ and m. Equation
(15) is thus true for all functions S ∈ C∞(R) subquadratic, which implies in partic-
ular that u is a distributional solution of (1). In a similar fashion, equality (15) is
extended to S ∈ C2(R) convex and subquadratic by mollifying S and passing to the
limit thanks to the bounds on S, m, and u.

Now, let S ∈ C2(R) convex. Since u is bounded on (0, T ) × Rn, we can change the
values of S(v) for large v in order to obtain a subquadratic function : set for instance
C = ||S ′′||L∞(−M,M) and define the C2 convex subquadratic function S̃ such that
S̃ ′′ = inf(C, S ′′) and S̃ = S on [−M,M ]. We have S(u) = S̃(u) a.e. in (0, T ) × Rn,
(idem with ηi and S ′); moreover, S̃ satisfies equation (15), and thus inequality (8),
since S̃ is convex. Thus, (8) is true for all convex functions S ∈ C2(R) and u is an
entropy solution of (1).

- Third step: If u is an entropy solution of (1), then m is a nonnegative locally
bounded measure.

Let us now prove the reciprocal implication. First, remark that if S ∈ C∞(R) is a
convex function such that S ′ ∈ D(R), then comparing (8) and (15), we have∫

R
S ′′(v)m(t, x, v) dv ≥ 0.

Unfortunately, if we consider any nonnegative test function ϕ ∈ D(R)+, we cannot
find S such that S ′′ = ϕ and S ′ ∈ D(R). The idea is thus to change the values
of ϕ(v) for large v in order to be able to find such a function S. This requires to
investigate the behavior of m for large v.

Indeed, for |v| > M , equation (13) becomes

∂

∂t
u(t, x) +

n∑
i=1

∂

∂xi

Ai(x, u(t, x)) = m(t, x, v).

Comparing the above equation to (1) yields

m(t, x, v) = 0 in D′((0, T )× Rn × (M,+∞)). (17)
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Now, if ϕ ∈ D(R)+ is an arbitrary nonnegative test function, define S ∈ C∞ such
that S ′′ = ϕ; S ′′ is a convex function. Multiplying S by a cut-off function which is
equal to 1 over the interval [−M,M ], and denoting by S̃ ∈ D(R) the function thus
obtained, we have :

(1) S(u(t, x)) = S̃(u(t, x)) on (0, T )× Rn (idem for ηi and S ′);
(2)

∫
R ϕ(v)m(t, x, v)dv =

∫
R S̃

′′(v)m(t, x, v)dv;
(3) S̃ satisfies (15);
(4) S satisfies (8).

Combining all these properties leads us to∫
R
ϕ(v)m(t, x, v)dv ≥ 0 ∀ϕ ∈ D(R)+.

Thus,m is a nonnegative distribution (and hence a nonnegative measure) on R+×Rn+1.

Finally, let us show that for all T > 0,

∫ T

0

∫
Rn+1

m(t, x, v) dt dx dv ≤ 1

2
||u0||2L2(Rn) +

∫ T

0

∫
Rn+1

an+1(x, v)χ(v, u(t, x)) dt dx dv.

(18)
Indeed, thanks to (17), (15) is true for all convex C2 functions (the proof of this fact is
the same as in the first part of the equivalence). Write (15) for S ∈ C2 a nonnegative
convex subquadratic function such that S(0) = 0; then S(u(t, ·)) ∈ L1(Rn) for all
t > 0. Integrating (15) on (0, T )× Rn yields

∫ T

0

∫
Rn+1

S ′′(v)m(t, x, v) dv dx dt≤
∫

Rn
S(u0(x)) dx (19)

+
∫ T

0

∫
Rn+1

an+1(x, v)χ(v, u(t, x))S ′′(v) dv dx dt.

The choice S(v) = |v|2
2

gives the desired result. 2

Remark 9 We wish to lay emphasis on a major difference with homogeneous scalar
conservation laws. For a homogeneous conservation law, if S ∈ C2(R) is convex and
such that S(0) = 0, then for any entropy solution in C(R+, L

1(Rn)) ∩ L∞(R+ ×Rn)

d

dt

∫
Rn
S(u(t, x)) dx ≤ 0. (20)

In particular, all Lp norms are nonincreasing (see [5]).

This is no longer true for heterogeneous conservation laws: indeed, integrating for-
mally (8) on Rn yields

d

dt

∫
Rn
S(u(t, x)) dx ≤

∫
Rn+1

S ′′(v)an+1(x, v)χ(v, u(t, x)) dx dv.
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In general, the right-hand side of the above inequality is not nonpositive, and no Lp

norm is conserved for p > 1. If we want to retrieve the properties of homogeneous
laws, we need to take additionnal hypotheses on the flux A in order that

∫
Rn
an+1(x, v)χ(v, u(t, x)) dx ≤ 0.

In particular, this is the case if we assume

sgn(v) an+1(v) = −|an+1(v)| ≤ 0. (21)

Notice that this hypothesis is satisfied for homogeneous fluxes (in that case an+1 ≡ 0).

It can be shown under the assumptions of theorem 2 and (21) that all entropy so-
lutions of (1) satisfy (20). And if m is the kinetic entropy defect measure, then
m((0,+∞)× Rn+1) <∞.

3 Existence of kinetic solutions

This section is devoted to the proof of the existence of kinetic solutions, as stated in
theorem 6. According to theorem 3, this implies the existence of entropy solutions
of (1).

Here, the kinetic formulation proves to be very useful: indeed, equation (10) is a
very simple linear transport equation of which we can compute explicit solutions
f(t, x, v) thanks to the method of characteristics. The whole problem is to prove
that these solutions can be written in the form f(t, x, v) = χ(v, u(t, x)), possibly up
to the addition of the source term ∂m

∂v
. With this aim in view, we intend to show

that solutions of (10) can be obtained as limits of a BGK-type relaxation model.
The steps of the proof are the same as in [5] : first, we study a linear transport
equation inspired from equation (10). In this first step, the main difference with the
homogeneous case lies in the fact that characteristics are no longer straight lines, and
the representation formula for solutions of the linear equation is more complicated.
Then, we introduce an approached equation for (10), which expresses a relaxation
towards an equilibrium of the form χ(v, u(t, x)). There, in order to adapt the proofs
of [5] it will be necessary to develop new ideas, especially because equation (10) or
equation (1) are no longer invariant under translations in the variable x. Eventually,
we prove a few compactness results which allow us to pass to the limit in nonlinear
terms as the relaxation parameter goes to ∞ (hydrodynamic limit). Once again,
these compactness results are tougher to obtain than in the homogeneous case due
to the more general form of characteristics which yields rather lenghty calculations.
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3.1 Preliminaries : study of a linear transport equation

First, let us study the following equation :

∂

∂t
f(t, x, v) + divx,v(a(x, v)f(t, x, v)) + λf(t, x, v) = g(t, x, v), (22)

f(t = 0, x, v) = f 0(x, v); (23)

λ > 0 is a fixed parameter, g is a given function which will sometimes be referred to
as source term.

Define the characteristic ODE associated to this equation : Ẋ(t, y, w) = a(X(t, y, w))

X(t = 0, y, w) = (y, w) ∈ Rn+1

X is well defined thanks to hypotheses (5), (6). For all t ≥ 0, X(t) : Rn+1 → Rn+1

is a C1-diffeomorphism and thanks to Liouville’s theorem,

J(t, z) := exp
(∫ t

0
divx,va(X(s, z)) ds

)
=

∣∣∣∣∣det
∂X(t, z)

∂z

∣∣∣∣∣ .
(Here and in the rest of the section z denotes the couple (y, w).)

Since divx,va = 0, notice that ∣∣∣∣∣det
∂X(t, z)

∂z

∣∣∣∣∣ = 1. (24)

We are then able to prove the following

Lemma 10 Let f 0 ∈ L1(Rn+1), g ∈ L1
loc(R+, L

1(Rn+1)); under the assumptions (2),
(3), (5), (6), there exists a unique solution f ∈ C(R+;L1(Rn+1)) of equation (23) in
the sense of distributions, and it has the following properties :

(1) Representation formula : for all t ≥ 0, for a.e. (y, w) ∈ Rn+1,

f(t,X(t, y, w)) = f 0(y, w)e−λt +
∫ t

0
e−λ(t−s)g(s,X(s, y, w)) ds; (25)

(2) Evolution of the total mass :

d

dt

∫
f(t, x, v) dx dv + λ

∫
f(t, x, v) dx dv =

∫
g(t, x, v) dx dv (26)

d

dt

∫
|f(t, x, v)| dx dv + λ

∫
|f(t, x, v)| dx dv ≤

∫
|g(t, x, v)| dx dv (27)
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PROOF. The proof of this lemma is left to the reader; it relies on the use of the
characteristics: first, the representation formula is shown for classical C1 solutions;
the relations (26) and (27) follow from (25) and (24). Then these results are extended
to weak solutions in L1 by density and passage to the limit. Uniqueness derives from
existence of solutions for the dual problem. 2

3.2 Relaxation model towards the equilibrium χ(v, u)

As mentioned previously, we study a BGK-type model which expresses the relaxation
of the solutions of a kinetic equation towards an equilibrium of the form χ(v, u(t, x)):

∂

∂t
fλ +

n∑
i=1

∂

∂xi

(aifλ) +
∂

∂v
(an+1fλ) + λ [fλ − χ(v, uλ(t, x))] = 0;

uλ(t, x) =
∫
R fλ(t, x, v) dv;

fλ(t = 0, x, v) = f 0(x, v).

(28)

In the rest of this subsection λ is a fixed parameter, and therefore we will denote by
f ,u the functions fλ,uλ.

Sometimes an additionnal assumption on the initial data f 0 ∈ L1(Rn+1) will be
necessary :

|f 0(x, v)| = sgn(v)f 0(x, v) ≤ 1. (29)

Proposition 11 Let f 0 ∈ L1(Rn+1), u0(x) :=
∫
R f

0(x, v) dv ∈ L1(Rn).

Under the assumptions (2), (3), (4), (5), (6), there exists a unique solution f ∈
C(R+;L1(Rn+1)) of the system (28), and f satisfies :

(1) Mass conservation : for all t ≥ 0,∫
Rn
u(t, x) dx =

∫
Rn
u0(x) dx, (30)

||u(t)||L1(Rn) ≤ ||f(t)||L1(Rn+1) ≤ ||f 0||L1(Rn+1); (31)

(2) L1 contraction property: for all t ≥ 0, for all solutions f1, f2 of (28) with initial
data f 0

1 , f
0
2 ,

||u1(t)− u2(t)||L1(Rn) ≤ ||f1(t)− f2(t)||L1(Rn+1) ≤ ||f 0
1 − f 0

2 ||L1(Rn+1). (32)

(3) Uniform equicontinuity in space: assume that f 0(x, v) = χ(v, u0(x)) for some
u0 ∈ L1(Rn). Then for all T,R > 0, there exists a function ωR,T : [0,∞) →
[0,∞) independant of λ, continuous and increasing, with ωR,T (0) = 0 such that

||u(t, ·+ h)− u(t, ·)||L1(BR) ≤ ωR,T (|h|) ∀t ∈ [0, T ], ∀h ∈ Rn, (33)

11



where BR := {x ∈ Rn; |x| < R}.
(4) Sign property: under the additionnal hypothesis (29), f satisfies

|f(t, x, v)| = sgn(v)f(t, x, v) ≤ 1; (34)

(5) L∞ norm control: still assuming that (29) holds, define

A∞ := inf{A > 0, f0(x, v) = 0 for |v| > A};

then for all t ≥ 0, we have

||u(t)||∞ ≤ A∞ + t||an+1||∞,
f(t, x, v) = 0 for |v| > A∞ + t||an+1||∞.

PROOF. We only give the main steps of the proof. This theorem was first proved
by B. Perthame and E. Tadmor in [8] in the homogeneous case. We shall follow the
same argument as B. Perthame in [5].

- First step : the existence is based on a fixed point method. Fix T > 0 and define
the following Banach spaces :

XT := C(0, T ;L1(Rn)), ||u||X := sup
t∈[0,T ]

||u(t)||L1(Rn);

YT := C(0, T ;L1(Rn+1)), ||f ||Y := sup
t∈[0,T ]

||f(t)||L1(Rn+1).

If w ∈ XT , thanks to lemma 10, there exists a unique f ∈ YT solution of the equation
∂

∂t
f + divx,v (af) + λ [f − χ(v, w(t, x))] = 0;

f(t = 0, x, v) = f 0(x, v).
(35)

Define the operator Φ : w ∈ XT 7→ u =
∫
R f dv ∈ XT , where f ∈ YT is the solution

of (35) corresponding to w. Then it is readily proved, using the linearity of equation
(23), inequality (27) and the property∫

R
|χ(v, u1)− χ(v, u2)| dv = |u1 − u2| ∀u1, u2 ∈ R,

that
d

dt

∫
Rn+1

|f1 − f2| dx dv + λ
∫

Rn+1
|f1 − f2| dx dv ≤ λ||w1 − w2||X .

Hence, by Gronwall’s lemma, Φ is a strict contraction from XT into itself. Thus, Φ
has a unique fixed point in XT for every initial data f 0 ∈ L1(Rn+1), and the function
f solution of (35) for the fixed point of Φ is a solution of (28).

- Second step : the proof of (30), (31) and (32) relies on the particular form of the
function χ and on properties (26) and (27) of lemma 10. It is left to the reader since
it does not give rise to any particular difficulty.

12



- Third step : inequality (33) is not so easy to prove since equation (23) is not
invariant under translations in the x variable; consequently, denoting by fh(t, x, v)
the solution corresponding to the translated initial data f 0(x + h, v), there is no
reason why fh(t, x, v) should be equal to f(t, x + h, v), and thus we cannot apply
(32).

Let us estimate f(t, x, v)−f(t, x+h, v), or more generally f(t, x, v)−f(t, x+h, v+w)
for all (h,w) ∈ Rn+1; in the sequel, for k = (h,w) ∈ Rn+1 and ϕ : Rn+1 → Rd (d ∈ N
arbitrary), we set

τkϕ : (x, v) ∈ Rn+1 7→ ϕ(x+ h, v + w), Jk := Id− τk.

f − τkf = Jkf is a solution of

∂

∂t
Jkf + divx,v((τka)Jkf) + λJkf = λJk [χ(v, u(t, x))]− Jka · ∇x,vf. (36)

Unfortunately the right-hand side of the above equation does not belong to L1.

We first derive formally an a priori estimate, under the additional hypothesis u0 ∈
BV (Rn)∩L∞(Rn), then we will briefly justify rigorously this a priori estimate, and
eventually we will generalize our result to the case when u0 merely belongs to L1.

Let α > 0, T > 0 arbitrary, and let

ϕα(x) := exp(−α(|x1|+ · · ·+ |xn|)), x ∈ Rn.

Then |∇ϕα(x)| ≤ αϕα(x) for almost every x ∈ Rn.

We denote by C a generic constant which depends only on n, T , u0 and the bounds
on a, but neither on α nor on λ. We begin with the case when k = (0, w), with
w ∈ R arbitrary. It is then easily checked that for all u ∈ R,∫

R
|χ(v, u)− χ(v + w, u)| dv ≤ 2 min(|w|, |u|) ∀(w, u) ∈ R2.

Thus, multiplying (36) by ϕα(x) and integrating on Rn+1 yields

d

dt

∫
Rn+1

|Jkf |ϕα + λ
∫

Rn+1
|Jkf |ϕα≤λ

C

αn
|w|+ ||∂va||L∞(Rn×(−A,A))|w|

∫
Rn+1

|∇x,vf |ϕα(x)

+||a||L∞(Rn×(−A,A))

∫
Rn+1

|Jkf ||∇xϕα|

≤C|w|
(
λ

αn
+
∫

Rn+1
|∇x,vf |ϕα(x)

)

+Cα
∫

Rn+1
|Jkf |ϕα

where A = ||u0||L∞ +T ||an+1||L∞ . We have used here the L∞ norm control property,
which will be proved later.
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We then use Gronwall’s lemma, assuming that λ > 2 and Cα < 1, and we obtain

∫
Rn+1

|Jkf |ϕα≤Ce−(λ−Cα)t
∫

Rn+1
|Jkf

0|ϕα + |w| C
αn

+C|w|
∫ t

0

∫
Rn+1

e−(λ−Cα)(t−s)|∇x,vf(s)|ϕα ds

≤C|w|
[

1

αn
+
∫ t

0

∫
Rn+1

|∇x,vf(s)|ϕα ds
]
.

We now let w go to 0, which gives∫
Rn+1

|∇vf(t)|ϕα ≤ C
[

1

αn
+
∫ t

0

∫
Rn+1

(|∇xf |+ |∇vf |)ϕα ds
]
.

Using Gronwall’s lemma for the second time, we derive∫ t

0

∫
Rn+1

|∇vf |ϕα ds ≤ C
[

1

αn
+
∫ t

0

∫
Rn+1

|∇xf |ϕα ds
]
.

Thanks to this bound on |∇vf |, we now derive a bound on |∇xf |: take k = (h, 0),
with h ∈ Rn arbitrary. With the same arguments as before, we obtain successively

d

dt

∫
Rn+1

|Jkf |ϕα ≤ C|h|
∫

Rn+1
|∇x,vf |ϕα + Cα

∫
Rn+1

|Jkf |ϕα,∫
Rn+1

|Jkf |ϕα(t) ≤ C|h|
[
||∇xu

0||M1 +
∫ t

0

∫
Rn+1

|∇x,vf |ϕα

]
.

We then let h go to 0, and we use the previous bound on |∇vf |; we apply once again
Gronwall’s lemma, and we are led to

sup
t∈[0,T ]

∫
Rn+1

|∇xf(t)|ϕα≤C
[

1

αn
+ ||∇xu

0||M1 +
∫ T

0

∫
Rn+1

|∇xf |ϕα

]

≤C
[

1

αn
+ ||∇xu

0||M1

]
.

Take now R > 0 arbitrary, α > 0 small enough so that e−αR ≥ 1/2. Then for all
h ∈ Rn, for all λ > 2, t ∈ [0, T ]

||uλ(t, ·+h)−uλ(t, ·)||L1(BR) ≤ |h|
∫

Rn+1
|∇xf(t)|ϕα ≤ C|h|

[
1

αn
+ ||∇xu

0||M1

]
. (37)

Let us now justify this a priori estimate: we consider a parabolic approximation of
the linear transport equation (23)

∂tf + divx,v(af) + λf − ε∆x,vf = g.

The solutions of this equation still satisfy (26), (27). Thus for all λ, ε > 0 there exists
a unique solution of

∂tfε,λ + divx,vfε,λ + λfε,λ − ε∆x,vfε,λ = λχ(v, uε,λ),
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with uε,λ =
∫
R fε,λ(·, v) dv. Moreover, classically fε,λ → fλ in YT . And thanks to the

regularizing parabolic term fε,λ has enough regularity for the a priori estimate to be
rigorously derived. Passing to the limit as ε→ 0 in (37) gives the desired result.

Now, when u0 does not belong to L∞ ∩ BV (Rn+1), we take a family u0
δ which has

these properties and such that ||u0 − u0
δ||L1(Rn) ≤ δ for all δ > 0. Then according

to the L1 contraction principle and (37) for the solution corresponding to the initial
data χ(v, u0

δ), we have

||u(t, ·+ h)− u(t, ·)||L1(BR) ≤ C(δ, R, T )|h|+ 2δ ∀t ∈ [0, T ] ∀δ > 0.

Inequality (33) is then proved with

ωR,T (η) = inf
δ>0

[C(δ, R, T )|h|+ 2δ] .

- Fourth step : sign property : if f 0 satisfies (29), then h(t, x, v) = sgn(v)f(t, x, v)
satisfies equation (23) with a source term g(t, x, v) = λ sgn(v)χ(v, u(t, x)) ∈ [0, λ]
and an initial data belonging to [0, 1]. According to the representation formula (25),
0 ≤ h ≤ 1 a.e.

- Fifth step : L∞ norm control : first, notice that the definition of A∞ only depends
on the initial data f 0. Consider the convex set

C := {w ∈ XT∩L∞((0, T )×Rn); ||w(t)||L∞(Rn) ≤ A∞+t||an+1||∞ for a.e. t ∈ (0, T )}.

The idea is to prove that C is invariant by the application Φ, which entails that
the fixed point of Φ belongs to C. Indeed, the fixed point of Φ corresponding to the
initial data f 0 is obtained as the limit in XT of any sequence wn = Φn(w0), with
w0 ∈ XT arbitrary. Take w0 ∈ C : if Φ leaves C invariant, then wn ∈ C for all n
and up to a subsequence, wn converges weakly* in L∞((0, T )×Rn). Thus the fixed
point of Φ belongs to C. Here the main difference with the proof of [5] is the use of
characteristics and the fact that the L∞ norm is not conserved.

Let us now prove that Φ(C) ⊂ C. Let w1 ∈ C, w2 = Φ(w1). Fix t ∈ (0, T ), x0 ∈ Rn,
and take v0 ∈ R such that |v0| > A∞ + t||an+1||∞; we denote by (y, w) the unique
vector in Rn+1 such that X(t, y, w) = (x0, v0), and by x(s, y, w) ∈ Rn, v(s, y, w) ∈ R
the functions

X(s, y, w) := (x(s, y, w), v(s, y, w)) ∀s ∈ [0, T ].

Thus according to hypothesis (3) and to the definition of X,

|v(s, y, w)− v(t, y, w)| ≤ ||an+1||∞(t− s) ∀s ∈ [0, T ],

which yields
|v(s, y, w)| > A∞ + s||an+1||∞ ∀s ∈ [0, t].

Hence f 0(y, w) = f 0(x(0, y, w), v(0, y, w)) = 0 and

χ(v(s, y, w), w1(s, x(s, y, w))) = 0 for s ∈ (0, T ).
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The representation formula (25) then leads us to

f1(t, x0, v0) = 0 for |v0| > A∞ + t||an+1||∞.

This equality combined with the sign property (34) entails that w2 ∈ C. 2

3.3 Passage to the limit : compactness of the family (uλ, fλ)

The last step of the proof of the existence consists in passing to the limit as λ→∞
in equation (28) (hydrodynamic limit). More precisely we will prove the following
proposition :

Proposition 12 Let u0 ∈ L1(Rn), f 0(x, v) := χ(v, u0(x)), T > 0. Assume that (2),
(3), (4), (5), (6) are satisfied.

Let (uλ, fλ) be the solution of the system (28) with initial data f 0. Then as λ→∞
there exists a subsequence (still denoted by λ) such that

uλ(t, x) → u(t, x) in C(0, T ;L1(Rn)), (38)
fλ(t, x, v) → f(t, x, v) = χ(v, u(t, x)) in C(0, T ;L1(Rn+1)) (39)

and f(t, x, v) = χ(v, u) is a weak solution of the kinetic equation (10).

Moreover, according to the uniqueness result, the whole family (uλ, fλ) converges to
(u, f).

PROOF.

We begin with the compactness of the family uλ, which follows from Ascoli’s theorem.

- First step : equicontinuity of the family uλ :

First, thanks to (33), the family uλ is locally equicontinuous in space. Moreover, for
all λ > 0, t ≥ 0, k > 0 we have

||uλ(t)− uλ(t+ k)||L1(Rn) ≤ ||f 0 − fλ(k)||L1(Rn+1)

thanks to the L1 contraction principle.

The difficult part is to prove that ||f 0 − fλ(k)||L1(Rn+1) is bounded uniformly in λ.
Once again we follow the proof of B. Perthame in [5].

In the following, we set

ω(u0, α) := sup
h∈Rn,|h|≤α

||u0(·+ h)− u0(·)||L1(Rn).
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The proof is similar to the one of (33): fλ − f 0 is a solution of

∂

∂t
(fλ − f 0) + divx,v

[
a(fλ − f 0)

]
+ λ(fλ − f 0) = λ

(
χ(v, uλ)− f 0

)
− a(x, v) · ∇x,vf

0,

but since f 0 is not regular, we replace f 0 by χ(v, u0
δ) in the above equation, where

u0
δ = u0 ∗ ϕδ and ϕδ = 1

δnϕ
(
·
δ

)
, ϕ the standard mollifier. Notice that

∇x,vχ(v, u0
δ) = (δ(v − u0

δ)∇xu
0
δ , δ(v)− δ(v − u0

δ)),

and an+1(x, v)δ(v) = 0 in the sense of distributions thanks to (4). Moreover, u0
δ ∈ L∞(Rn)

and
||u0

δ||L∞(Rn) ≤
||ϕ||L∞(Rn)

δn
||u0||L1(Rn) =

K

δn
.

Set
Aδ := ||a||L∞(Rn×(− K

δn , K
δn )).

Using property (27) of lemma 10 yields the following inequality

d

dt
||fλ − χ(v, u0

δ)||L1(Rn+1) ≤ Aδ||∇xχ(v, u0
δ)||M1(Rn+1) + ||an+1(·, u0

δ)||L1(Rn)

in which we easily evaluate the different terms

||∇xχ(v, u0
δ)||M1(Rn+1) ≤

||∇ϕ||L1(Rn)

δ
ω(u0, δ),

||fλ − χ(v, u0)||L1(Rn+1) ≤ ||fλ − χ(v, u0
δ)||L1(Rn+1) + ||u0 − u0

δ||L1(Rn)

||u0 − u0
δ||L1(Rn) ≤

∫
Rn×Rn

|u0(x− y)− u0(x)| ϕδ(y) dx dy ≤ ω(u0, δ).

Moreover, thanks to hypotheses (4), (5) we also have

||an+1(·, u0
δ)||L1(Rn) ≤ Bδ||u0||L1(Rn),

where Bδ := ||∂van+1||L∞(Rn×(− K
δn , K

δn )).

Eventually we obtain the following bound uniformly in λ > 0

||fλ(k)− χ(v, u0)||L1(Rn+1) ≤ ω(u0, δ)

[
2 + kAδ

||∇ϕ||L1(Rn)

δ

]
+ kBδ||u0||L1(Rn).

We are thus led to define the modulus of equicontinuity in time

ω1(k) := inf
δ>0

{
ω(u0, δ)

[
2 + kAδ

||∇ϕ||L1(Rn)

δ

]
+ kBδ||u0||L1(Rn)

}
. (40)

- Second step : uniform equi-integrability :

The property is first shown in the case of bounded initial data, and then generalized
to the case of initial data in L1(Rn).
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If u0 ∈ L∞(Rn), according to the L∞ norm control property of proposition 11,
fλ(t, x, v) = 0 for a.e. (t, x) ∈ R+ × Rn, v ∈ R such that |v| > ||u0||∞ + t||an+1||∞.
In that case, define

A := ||a||L∞(Rn×(−M,M)),

where M := ||u0||∞ + T ||an+1||∞.

Take ϕ ∈ C1(Rn; R) such that ϕ(x) = 0 for |x| ≤ 1
2
, ϕ(x) = 1 for |x| ≥ 1, and

0 ≤ ϕ ≤ 1 . Define ϕR := ϕ
(
·
R

)
. Then multiplying (28) by ϕR yields

∂

∂t
(fλϕR) + divx,v (afλϕR) + λϕR[fλ − χ(v, uλ)] = fλ

n∑
i=1

ai
∂ϕR

∂xi

.

We deduce from the above inequality that

d

dt

∫
Rn+1

|fλ|ϕR dx dv ≤ A
∫

Rn+1
|fλ||∇xϕR| dx dv ≤

A

R
||∇xϕ||∞||u0||L1(Rn)

which yields eventually

∫
|x|≥R

|uλ(t, x)| dx≤
∫

Rn+1
|fλ(t, x, v)|ϕR(x) dx dv

≤
∫
|x|≥R

2

|u0(x)| dx+ T
A

R
||∇xϕ||∞||u0||L1(Rn). (41)

This last inequality shows the uniform equi-integrability of the family uλ in the case
where u0 is bounded.

If u0 is not bounded, we regularize u0 by convolution : set u0
δ = u0 ∗ φδ, and let

uλ,δ, fλ,δ be the solution of the system (28) with the initial data χ(v, u0
δ).

According to the uniform equi-integrability result in the case of bounded initial data,
we have, with Aδ := ||a||L∞(Rn×(− K

δn , K
δn ))∫

|x|≥R
|uλ,δ(t, x)| dx ≤

∫
|x|≥R

2

|u0
δ(x)| dx+ T

Aδ

R
||∇xϕ||∞||u0

ε||L1(Rn).

The L1 contraction principle (32) yields∫
|x|≥R

|uλ(t, x)| dx ≤
∫
|x|≥R

2

|u0(x)| dx+ T
Aδ

R
||∇xϕ||∞||u0||L1(Rn) + 2||u0

δ − u0||L1(Rn).

Choose δ > 0 so that the quantity ||u0
δ−u0||L1(Rn) is small enough, and then with that

choice of δ, take R sufficiently large so that the two other terms in the right-hand
side are small as well. Hence uλ is uniformly equi-integrable.

Thus, according to Ascoli’s theorem, the family {uλ}λ>0 is compact in C(0, T ;L1(Rn))
for all T > 0; therefore there exist u ∈ C(0, T ;L1(Rn)) and a sequence λ(n) → ∞
such that uλ(n) converges to u in C(0, T ;L1(Rn)).
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-Third step : fλ(n) → χ(v, u) in C(0, T ;L1(Rn+1)) :

Let us recall the representation formula

fλ(n)(t,X(t)) = χ(w, u0(y))e−λ(n)t + λ(n)
∫ t

0
e−λ(n)(t−s)χ(v(s), uλ(n)(s, x(s))) ds.

(42)
In the above formula, for more simplicity we have omitted the variables y, w, which
are arguments of the functions x(s), v(s), X(t). We will systematically use this
notation in the rest of the proof when no confusion might occur.

Thus

fλ(n)(t,X(t))− χ(v(t), u(t, x(t)))

=
[
f 0(y, w)− χ(v(t), u(t, x(t)))

]
e−λ(n)t

+λ(n)
∫ t

0
e−λ(n)(t−s)

[
χ(v(s), uλ(n)(s, x(s)))− χ(v(t), u(t, x(t)))

]
ds.

We integrate this equality with respect to y, w, recalling (24)

∣∣∣∣∣∣fλ(n)(t)− χ(v, u(t))
∣∣∣∣∣∣

L1(Rn+1)

≤
(∣∣∣∣∣∣f 0

∣∣∣∣∣∣
L1(Rn+1)

+ ||u(t)||L1(Rn)

)
e−λ(n)t

+ λ(n)
∫ t

0

∫
Rn+1

e−λ(n)(t−s)
∣∣∣χ(v(s), uλ(n)(s, x(s)))− χ(v(t), u(t, x(t)))

∣∣∣ ds dy dw.
A few rather lengthy calculations are necessary in order to show that the right-hand
side of the inequality converges to 0 : first, we write

|χ (v(s), uλ(s, x(s)))− χ (v(t), u(t, x(t)))|
≤ |χ (v(s), uλ(s, x(s)))− χ (v(s), u(s, x(s)))| (43)
+ |χ (v(s), u(s, x(s)))− χ (v(s), u(s, x(t)))| (44)
+ |χ (v(s), u(s, x(t)))− χ (v(t), u(s, x(t)))| (45)
+ |χ (v(t), u(s, x(t)))− χ (v(t), u(t, x(t)))| (46)

We need to bound each of the four integrals generated by the terms of the right-hand
side (recall that x(s), x(t), v(s), v(t) are functions of (y, w)).

Concerning the integral corresponding to (43), after integrating with respect to y
and w and changing the variables from (y, w) to (x, v) = X(s, y, w) (remember that
the jacobian of this change of variables is equal to 1 thanks to (24)), we obtain

λ(n)
∫ t

0

∫
Rn+1

e−λ(n)(t−s) |χ (v(s), uλ(s, x(s)))− χ (v(s), u(s, x(s)))| ds dy dw

≤ ||uλ − u||XT
→ 0.
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The same kind of trick allows us to replace u by any regular function uδ, and the
approximation error is then upper-bounded by ||u − uδ||XT

. Therefore when it is
necessary we will replace u by a regular approximation of u in XT .

In a similar fashion, in the integral corresponding to (46) we use the change of
variables (x, v) = X(t, y, w) and we are led to

λ(n)
∫ t

0

∫
Rn+1

e−λ(n)(t−s) |χ(v(t), u(s, x(t)))− χ(v(t), u(t, x(t)))| ds dy dw

≤λ(n)
∫ t

0
e−λ(n)sω1(s) ds→ 0.

It remains to bound the integrals corresponding to the two other terms. We begin
with (45) : set, for 0 < s < t, (y, w) ∈ Rn+1,

h(t, s, y, w) := v(s, y, w)− v(t, y, w);

According to the definition of the flux X(s), |h(t, s, y, w)| ≤ ||an+1||∞(t− s).

Define h̃(t, s, x, v) = v(s,X(t)−1(x, v)) − v (recall that X(t) : Rn+1 → Rn+1 is a
C1-diffeomorphism). Then

∣∣∣h̃(t, s, x, v)∣∣∣ ≤ ||an+1||∞(t− s).

In the integral corresponding to (45) we change the variables from (y, w) to (x, v) = X(t, y, w):

λ(n)
∫ t

0

∫
Rn+1

e−λ(n)(t−s) |χ(v(s), u(s, x(t)))− χ(v(t), u(s, x(t)))| (y, w) ds dy dw

= λ(n)
∫ t

0

∫
Rn+1

e−λ(n)(t−s)
∣∣∣χ (v + h̃(t, s, x, v), u(s, x)

)
− χ(v, u(s, x))

∣∣∣ ds dx dv
≤λ(n)

∫ t

0

∫
Rn+1

e−λ(n)(t−s)
∣∣∣χ (v +

∣∣∣h̃(t, s, x, v)∣∣∣ , u(s, x))− χ(v, u(s, x))
∣∣∣ ds dx dv

+ λ(n)
∫ t

0

∫
Rn+1

e−λ(n)(t−s)
∣∣∣χ (v − ∣∣∣h̃(t, s, x, v)∣∣∣ , u(s, x))− χ(v, u(s, x))

∣∣∣ ds dx dv.
Let us upper-bound for instance |χ(v + |h̃|, u)− χ(v, u)|:

∣∣∣χ(v + |h̃(t, s, x, v)|, u(s, x))− χ(v, u(s, x))
∣∣∣

≤ |χ(v + ||an+1||∞(t− s), u(s, x))− χ(v, u(s, x))|
+ 1u(s,x)<01−||an+1||∞(t−s)<v<u(s,x)

+ 1u(s,x)>01u(s,x)−||an+1||∞(t−s)<v<0.

Integrating this inequality on Rn+1 yields
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∫
Rn

∫
R
e−λ(n)(t−s)

∣∣∣χ (v + |h̃(t, s, x, v)|, u(s, x)
)
− χ (v, u(s, x))

∣∣∣ dx dv
≤ ||inf(|u(s)|, ||an+1||∞(t− s))||L1(Rn)

+
∣∣∣∣∣∣1u(s)<0(u+ ||an+1||∞(t− s))+

∣∣∣∣∣∣
L1(Rn)

+
∣∣∣∣∣∣1u(s)>0(u− ||an+1||∞(t− s))−

∣∣∣∣∣∣
L1(Rn)

.

Each of the terms in the right-hand side goes to 0 as s→ t. Therefore

λ(n)
∫ t

0

∫
Rn

∫
R
e−λ(n)(t−s)

∣∣∣χ (v +
∣∣∣h̃(t, s, x, v)∣∣∣ , u(s, x))− χ(v, u(s, x))

∣∣∣ ds dx dv −→
n→∞

0.

The integral corresponding to |χ(v − |h̃|, u) − χ(v, u)| can be treated in a similar
fashion.

We now derive a bound for (44); the main difficulty here comes from the lack
of regularity of u. Thus we consider a function uδ ∈ C1([0, T ] × Rn) such that
Suppuδ(t) ⊂ Kδ ∀t ∈ [0, T ], withKδ a compact set of Rn, and ||uδ(t)−u(t)||L1(Rn) ≤ δ
for all t ∈ [0, T ]. As previously observed, replacing u by uδ in the integral correspond-
ing to (44) and integrating with respect to y, w leads to an approximation error which
can be upper-bounded by ||u− uδ||XT

≤ δ.

Let us focus on the integral

∫
Rn+1

|χ (v(s, y, w), uδ(s, x(s, y, w)))− χ (v(s, y, w), uδ(s, x(t, y, w)))| dy dw. (47)

In order to derive an upper bound for (47), we use the same kind of method as for
(45). Set H(s, t, y, w) = x(t, y, w)− x(s, y, w). Then for 0 < s < t and 1 ≤ i ≤ n, we
have

Hi(s, t, y, w) =
∫ t

s
ai(x(r, y, w), v(r, y, w)) dr.

Assume that |v(s, y, w)| ≤ ||uδ||∞; then

|v(r, y, w)| ≤ ||uδ||∞ + (r − s)||an+1||∞ ≤ ||uδ||∞ + T ||an+1||∞ ∀s < r < t.

Therefore there exists Aδ > 0 such that if |v(s, y, v)| ≤ ||uδ||∞, then

|H(s, t, y, w)| ≤ Aδ(t− s).

Now define H̃(s, t, x, v) = H(s, t,X(s)−1(x, v)) (recall that X(s) is a C1 diffeomor-
phism of Rn+1). We have just proved that there exists Aδ > 0 such that

|v| ≤ ||uδ||∞ ⇒ |H̃(s, t, x, v)| ≤ Aδ(t− s).

We are now ready to upper-bound (47) :
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∫
Rn+1

|χ(v(s, y, w), uδ(s, x(s, y, w)))− χ(v(s, y, w), uδ(s, x(t, y, w)))| dy dw

=
∫

Rn+1

∣∣∣χ(v, uδ(s, x))− χ(v, uδ(s, x+ H̃(s, t, x, v)))
∣∣∣ dx dv

=
∫

Rn

∫
|v|≤||uδ ||∞

1v∈[uδ(s,x),uδ(s,x+H̃(s,t,x,v))] dx dv

≤
∫

Rn

∫
R
1Iδ(t,s,x)(v) dv dx where Iδ(t, s, x) =

⋃
h ∈ Rn,

|h| ≤ Aδ(t− s)

[uδ(t, x), uδ(t, x+ h)]

≤
∫

Rn
sup

h ∈ Rn,

|h| ≤ Aδ(t− s)

|uδ(t, x)− uδ(t, x+ h)| dx

≤
∫

Kδ+B(0,Aδt)
||∇uδ||∞Aδ(t− s) dx

≤Aδ(t− s) mes (Kδ +B(0, Aδ t)) ||∇uδ||∞.

Hence

λ(n)
∫ t

0

∫
Rn+1

e−λ(n)(t−s) |χ(v(s), uδ(s, x(s)))− χ(v(s), uδ(s, x(t)))| (y, w) dy dw

≤ 1

λ(n)
Aδ mes (Supp uδ +B(0, Aδt)) ||∇uδ||∞

(44) is thus upper-bounded by

inf
δ>0

[
δ +

1

λ(n)
Aδ mes (Supp uδ +B(0, Aδt)) ||∇uδ||∞

]
−→
n→∞

0.

Thus we have showed that for all T > 0, there exists u ∈ C(0, T ;L1(Rn)) and a
sequence λ(n) →∞ such that

uλ(n) → u in C(0, T ;L1(Rn)),

fλ(n) → f = χ(·, u) in C(0, T ;L1(Rn+1)).

- Fourth step : χ(v, u) is a solution of (10) :

First, let us recall the equation satisfied by fλ :

∂

∂t
fλ + divx,v (afλ) = λ [χ(v, uλ(t, x))− fλ] ;

uλ(t, x) =
∫

R
fλ(t, x, v) dv;

fλ(t = 0, x, v) = f 0(x, v) = χ(v, u0(x)).
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The following lemma allows us to transform the right-hand side of the evolution
equation satisfied by fλ:

Lemma 13 Let g ∈ L1(R) such that

sgn(v)g(v) = |g(v)| ≤ 1 a.e..

Let w =
∫
R g(v) dv. There exists a unique function m ∈ C0(R) such that

χ(v, w)− g(v) =
d

dv
m(v).

Moreover, m is nonnegative.

(A proof of this lemma is given in [5].)

Therefore fλ satifies a kinetic equation of the kind

∂

∂t
fλ + divx,v (afλ) =

∂

∂v
mλ(t, x, v); (48)

where mλ is a nonnegative measure and mλ(t, x, ·) ∈ C0(R) for almost every (t, x).

In order to pass to the limit in the above equation, we need to prove that the family
mλ is bounded uniformly in λ; precisely, mλ satisfies the following inequality for a.e.
v ∈ R, for all T > 0

∫ T

0

∫
Rn
mλ(t, x, v) dx dt ≤ µ(v) +

∫ T

0

∫
Rn
an+1(x, v)fλ(t, x, v) dx dt (49)

where

µ(v) := 1v≥0||(u0 − v)+||L1(Rn) + 1v≥0||(u0 − v)−||L1(Rn) ≤ ||u0||L1(Rn).

The proof of this inequality is similar to the one of the bound on m at the end of
theorem 3. First, we prove that for all functions S ∈ C2(R) such that S(0) = 0 and
S ′ has bounded support we have

∫ T

0

∫
Rn+1

S ′′(v)mλ(t, x, v) dx dv dt

≤
∫

Rn+1
S ′(v)(χ(v, u0(x))− fλ(T, x, v)) dv dx

+
∫ T

0

∫
Rn+1

an+1(x, v)fλ(t, x, v)S
′′(v) dv dx dt. (50)

Then we generalize this result to functions of the type S(v) = (v − v0)+ (v0 > 0)
and S(v) = (v − v0)− (v0 < 0) thanks to regularizations, which leads to (49).
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Integrating (49) with respect to v on the interval (−R,R) (with R > 0 arbitrary)
yields∫ T

0

∫
Rn

∫ R

−R
mλ(t, x, v) dv dx dt ≤ 2R||u0||L1(Rn) + T ||an+1||L∞(Rn+1)||u0||L1(Rn);

thus we can extract a sub-sequence, still denoted by λ(n), such that mλ(n) converges
in w−M1 to a nonnegative measure m bounded on (0, T )×Rn× (−R,R) for R > 0
arbitrary, and which satisfies inequalities of the type (50). Taking S(v) = v2

2
leads

to the fact that m is bounded on (0, T ) × Rn+1 if u0 ∈ L2. Eventually, passing to
the limit in (48) yields

∂

∂t
χ(v, u(t, x)) + divx,v (a(x, v)χ(v, u(t, x))) =

∂

∂v
m(t, x, v)

and thus u is an entropy solution of (1).

Moreover, it follows from the uniqueness result that the whole families fλ and mλ

converge to χ(v, u(t, x)) and u in C(0, T ;L1(Rn+1)) and C(0, T ;L1(Rn)) respectively,
and u is then well defined on [0,+∞)× Rn. 2

4 Uniqueness - L1 contraction principle

This section is devoted to the proof of the uniqueness of kinetic (and thus entropy)
solutions of (1), in a general L1 setting. The classical proof by Kruzkhov of the
L1 contraction principle (see [6,7] in the general case, and also [2] in the case of a
one-dimensional homogeneous conservation law) relies on the use of the so-called
Kruzkhov entropies S(u) = |u− k| and on the doubling of the variables. It requires
to work with entropy solutions in C(R+, L

1)∩L∞loc(R+, L
∞(Rn)). Here, we will follow

the proof of B. Perthame in [5], [9] (see also [10] for another formulation of the same
result using measure valued solutions): uniqueness is in fact proved in a broader
class of solutions, called generalized kinetic solutions. Some parts of the proof are
rather technical, since they involve regularization by convolution of equation (10)
and strong convergence results in order to pass to the limit in nonlinear terms. We
will pass quickly on the details which are treated in [5] and [9] in order to focus on
the difficulties which did not occur in the homogeneous case.

Let us start with a definition:

Definition 14 A function f ∈ L∞loc(0,+∞;L1(Rn+1)) is called a generalized kinetic
solution of the scalar conservation law (1) if there exists a nonnegative measure m
such that (f,m) is a distributional solution of the system

∂tf(t, x, v) + divx,v (a(x, v)f(t, x, v)) = ∂vm(t, x, v),

f(t = 0, x, v) = χ(v, u0(x)), u0 ∈ L1(Rn). (51)
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and if there exists a family µT ∈ L∞0 (R), T > 0 and a nonnegative measure ν such
that ∫ T

0

∫
Rn
m(t, x, v) dx dt ≤ µT (v) a.e. v ∈ R ∀T > 0, (52)

|f(t, x, v)| = sgn(v)f(t, x, v) ≤ 1, (53)
∂f

∂v
= δ(v)− ν(t, x, v). (54)

Remark 15 Without any loss of generality, we assume in the following that the
family µT is increasing in T , and that µT nonincreasing (resp. nondecreasing) on
(0,+∞) (resp. (−∞, 0)) for each T > 0. Recall that L∞0 (R) is the subset of L∞(R)
which consists of functions which go to 0 at ±∞.

Remark 16 It is easily checked that if u is a kinetic solution of (1), then χ(v, u) is
a generalized kinetic solution of (1) with m the kinetic entropy defect measure. In
that case ν(t, x, v) = δ(v − u(t, x)) and using inequality (19) with S(v) = (v − v0)+

(resp. S(v) = (v − v0)−) with v0 > 0 (resp. v0 < 0) yields inequality (52) with

µT (v) :=1v≥0||(u0 − v)+||L1(Rn) + 1v≤0||(u0 − v)−||L1(Rn)

+||an+1||∞ mes{(t, x) ∈ (0, T )× Rn, |u(t, x)| > |v|}.

Notice also that condition (54) implies that f is monotonous (in v, for almost every
(t, x)) on each of the intervals (0,+∞), (−∞, 0), and since f ∈ L1,

f(t, x, v) → 0 as |v| → ∞

almost everywhere in (t, x). Consequently, integrating now (54) between −∞ and
+∞ yields ∫

R
ν(t, x, v) dv = 1 for a.e. t, x. (55)

For more simplicity, we will also assume that f is continuous at t = 0 with values
in L1(Rn+1). This property can in fact be derived from equation (51) (see [11], [5]);
it is always satisfied for entropy solutions.

The result we will prove here is the following:

Theorem 17 Assume that (2), (3), (4), (7) are satisfied.

Let u0 ∈ L1(Rn), and let f be a generalized kinetic solution of the scalar conservation
law (1) which is continuous at t = 0 and such that∫ T

0

∫
Rn+1

|ai(x, v)| |f(t, x, v)| dt dx dv < +∞ ∀T > 0 (1 ≤ i ≤ n). (56)

Then there exists u ∈ L∞loc(0,+∞;L1(Rn)) such that f(t, x, v) = χ(v, u(t, x)) almost
everywhere, where u is a solution of (1) (in the sense of distributions).
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Moreover, let f1 = χ(v, u1), f2 = χ(v, u2) be two generalized kinetic solutions of (1)
with initial datas χ(v, u0

1), χ(v, u0
2). Assume that fj satisfies (56) for j = 1, 2, and

that fj is continuous at time t = 0. Then the L1 contraction principle holds: for
almost every t > 0,
∫

Rn
|u1(t, x)− u2(t, x)| dx =

∫
Rn+1

|f1 − f2|(t, x, v) dx dv ≤
∫

Rn
|u0

1(x)− u0
2| dx (57)

The first step of the proof is the regularization by convolution of equation (51) in
order to use the chain rule for generalized kinetic solutions and compare f 2 and |f |.
Take three mollifiers ϕ1 ∈ D(R), ϕ2 ∈ D(Rn), ϕ3 ∈ D(R), ϕi ≥ 0 (i = 1, 2, 3), with

∫
R
ϕ1 =

∫
Rn
ϕ2 =

∫
R
ϕ3 = 1.

Assume that supp ϕ1 ⊂ [−1, 0], supp ϕ2 ⊂ B(0, 1), supp ϕ3 ⊂ [−1, 1].

For ε > 0, set

ϕε(t, x, v) :=
1

εn+2
ϕ1

(
t

ε

)
ϕ2

(
x

ε

)
ϕ3

(
v

ε

)
, t ∈ R, x ∈ Rn, v ∈ R.

Define, for any couple (f,m) solution of (51)

fε := f ∗ ϕε, mε := m ∗ ϕε.

Lemma 18 fε satisfies the following equation in D′(Rn+1)

∂

∂t
fε + divx,v(afε) =

∂

∂v
mε + rε, (58)

where the remainder rε goes to 0 in L1
loc((0,∞)× Rn+1) as ε→ 0 for all T > 0.

Moreover, for all φ ∈ D([0,∞)× Rn), the following inequality holds

0 ≤
∣∣∣∣∣
∫ T

0

∫
Rn
mε(t, x, v)φ(t, x) dt dx

∣∣∣∣∣ ≤ ||φ||∞ sup(µT+ε(v − ε), µT+ε(v + ε)).

PROOF. Since

rε(t, x, v) = divx,v(afε)− divx,v((af) ∗ ϕε),

rε can be written as
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rε(t, z) =
n+1∑
i=1

∫ ∞

0

∫
Rn+1

[ai(z − z′)− ai(z)] f(t− s, z − z′) ∂iϕε(s, z
′) dz′ ds

=
∑

1≤i,j≤n+1

∫ 1

0

∫ ∞

0

∫
Rn+1

[∂jai(z)− ∂jai(z − τz′)]×

×f(t− s, z − z′)zj∂iϕε(s, z
′) dz′ ds dτ

+
∑

1≤i,j≤n+1

∂jai(z)
∫ ∞

0

∫
Rn+1

f(t− s, z − z′)zj∂iϕε(s, z
′) dz′ ds

(In the above inequalities, we have used the notations z = (x, v) ∈ Rn+1 and ∂i = ∂xi

for 1 ≤ i ≤ n, ∂n+1 = ∂v.)

Since divx,va = 0, the last term in the right hand side goes to 0 in L1
loc((0,∞)×Rn+1)

as ε→ 0. As for the other term, for any R,R′ > 0,

∫
|x|≤R,|v|≤R′

dz
∫ 1

0

∫ ∞

0

∫
Rn+1

|∂jai(z)− ∂jai(z − τz′)| |f(t−s, z−z′)| |zj∂iϕε(s, z
′)| dz′dsdτ

≤ ||zj∂iϕ||L1((0,∞)×Rn+1) ωR,R′(∂jai, ε),

where
ωR,R′(f, h) := sup

|z|≤h

||f(·+ z)− f(·)||L1(BR×(−R′,R′))

for any function f ∈ L1
loc(Rn+1).

Thus rε → 0 in L1
loc((0,∞)× Rn+1) as ε→ 0 for all T > 0.

The bound on mε is easily proved with the assumptions on the function µT and is
left to the reader. 2

In a second step, we prove the following

Proposition 19 Let f be a generalized kinetic solution of equation (1) continuous
at time t = 0 and satisfying (56). Then there exists u ∈ L∞loc((0,+∞);L1(Rn)) such
that f(t, x, v) = χ(v, u(t, x)) almost everywhere.

Moreover, for all nonnegative test function ψ ∈ D(Rn+1), for all T > 0,

∫ T

0

∫
Rn+1

mε(t, x, v) ν ∗ ϕε(t, x, v)ψ(x, v) dt dx dv → 0 as ε→ 0 (59)

where ν(t, x, v) = δ(v − u(t, x)).

PROOF. The proof relies on the comparison between f 2 and |f | = sgn(v)f . First,
let us define

sgnε(v) := sgn ∗ ϕε(v);
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then the function gε(t, x, v) := sgnε(v)fε(t, x, v) satisfies

∂tgε + divx,v(agε) =
∂mε

∂v
sgnε(v) + rεsgnε(v) + sgn′ε(v)an+1(x, v)fε;

On the other hand, f 2
ε satisfies

∂tf
2
ε + divx,v(af

2
ε ) = 2

∂mε

∂v
fε + 2rεfε,

and as ε→ 0, we have

gε → sgn(v)f = |f | in L1
loc((0,∞)× Rn+1),

f 2
ε → f 2 in L1

loc((0,∞)× Rn+1),

gε(t = 0) → |χ(v, u0(x))| in L1(Rn+1),

f 2
ε (t = 0) → |χ(v, u0(x))|2 = |χ(v, u0(x))| in L1(Rn+1)

thanks to the continuity assumption at t = 0. And for any nonnegative test function
ψ = ψ(x, v) ∈ D(Rn+1), for any T > 0, we have

∫
Rn+1

[
f 2

ε (T, x, v)− gε(T, x, v)
]
ψ(x, v) dx dv

=
∫

Rn+1

[
f 2

ε (t = 0, x, v)− gε(t = 0, x, v)
]
ψ(x, v) dx dv

+
∫ T

0

∫
Rn+1

[
f 2

ε (t, x, v)− gε(t, x, v)
]
a(x, v) · ∇x,vψ(x, v) dx dv dt

+
∫ T

0

∫
Rn+1

mε(t, x, v) [sgn′ε(v)− 2∂vfε]ψ(x, v) dx dv dt

+
∫ T

0

∫
Rn+1

mε(t, x, v) [sgnε(v)− 2fε] ∂vψ(x, v) dx dv dt

+
∫ T

0

∫
Rn+1

rε(t, x, v) [2fε − sgnε(v)]ψ(x, v) dx dv dt

−
∫ T

0

∫
Rn+1

sgn′ε(v)an+1(x, v)fε(t, x, v)ψ(x, v) dx dv dt.

Recall that
∂vfε = (δ(v)− ν) ∗ ϕε(t, x, v)

and that sgn′ε(v) = 2δ(v) ∗ ϕε(t, x, v); hence

sgn′ε(v)− 2∂vfε = 2ν ∗ ϕε(t, x, v).

Choose ψ(x, v) = θ
(

x
R

)
φR(v), with θ ∈ D(Rn), φR ∈ D(R), φR(v) = 1 if |v| ≤ R,

φR(v) = 0 if |v| ≥ R+1, θ(x) = 1 when |x| ≤ 1, and 0 ≤ |φ′R| ≤ 2 (R > 0 arbitrary).
Then for all ε > 0, we have
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∣∣∣∣∣
∫ T

0

∫
Rn+1

mε(t, x, v) [sgnε(v)− 2fε] ∂vψ(x, v) dx dv dt

∣∣∣∣∣
≤ 2

∫ T

0

∫
Rn

∫
R≤|v|≤R+1

mε(t, x, v) dx dv dt

≤ 2
∫

R≤|v|≤R+1
sup(µT+ε(v − ε), µT+ε(v + ε)) dv

≤ 2(µT+1(R− 1) + µT+1(−R + 1))

for R large enough, for 0 < ε < 1.

We pass to the limit as ε→ 0: for almost every T > 0, we have

∫
Rn+1

[
f(T, x, v)2 − |f(T, x, v)|

]
θ
(
x

R

)
φR(v) dx dv

≥
∫ T

0

∫
Rn+1

[
f 2(t, x, v)− |f(t, x, v)|

]
a(x, v) · ∇x,v

(
θ
(
x

R

)
φR(v)

)
dx dv dt

+2 lim sup
ε→0

∫ T

0

∫
Rn+1

mε(t, x, v)ν ∗ ϕε(t, x, v)θ
(
x

R

)
φR(v) dx dv dt

−2(µT+1(R− 1) + µT+1(−R + 1)).

We now pass to the limit as R→∞ using assumption (56):

0≥
∫

Rn+1

[
f(T, x, v)2 − |f(T, x, v)|

]
dx dv

≥ lim sup
R→∞

lim sup
ε→0

∫ T

0

∫
Rn+1

mε(t, x, v)2ν ∗ ϕε(t, x, v)θ
(
x

R

)
φR(v) dx dv dv

≥ 0

Consequently, f(T, x, v)2 = |f(T, x, v)| a.e. and f only takes the values 0, ±1.
Combining this property with (54) leads us to f(t, x, v) = χ(v, u(t, x)) for some
u ∈ L∞loc((0,+∞), L1(Rn)).

Moreover,

lim sup
R→∞

lim sup
ε→0

∫ T

0

∫
Rn+1

mε(t, x, v)ν ∗ ϕε(t, x, v)θ
(
x

R

)
φR(v) dx dv dv = 0

and since f = χ(v, u(t, x)), ν(t, x, v) = δ(v−u(t, x)), which proves the last assertion
of proposition 19. 2

The first part of theorem 17 is thus proved. We are now ready to show the L1

contraction principle for generalized kinetic solutions. Take two generalized solutions
f1, f2, continuous at time t = 0 and satisfying (56). Setting fε,i = fi ∗ ϕε, we have

∂tfε,i + divx,v(afε,i) =
∂mε,i

∂v
+ rεi, i = 1, 2,
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and fi(t = 0) = χ(v, u0
i ). It is easily checked that

∂t(fε,1−fε,2)
2+divx,v

(
a(fε,1 − fε,2)

2
)

= 2
∂(mε,1 −mε,2)

∂v
(fε,1 − fε,2)+2(rε1 − rε2)(fε,1 − fε,2).

(60)

Take a test function ψR(x, v) := θ
(

x
R

)
φR(v), with R > 0 and with θ, φR satisfying

the same hypotheses as in the proof of proposition 19. Multiplying (60) by ψR(x, v)
and integrating on (0, T )× Rn+1 (T > 0 arbitrary) yields

∫
Rn+1

(fε,1 − fε,2)
2(t = T, x, v)ψR(x, v) dx dv (61)

=
∫

Rn+1
(fε,1 − fε,2)

2(t = 0, x, v)ψR(x, v) dx dv (62)

+
∫ T

0

∫
Rn+1

(fε,1 − fε,2)
2a(x, v) · ∇x,vψR(x, v) dx dv dt (63)

− 2
∫ T

0

∫
Rn+1

(mε,1 −mε,2) (fε,1 − fε,2)θ
(
x

R

)
∂vφR(v) dx dv dt (64)

− 2
∫ T

0

∫
Rn+1

(mε,1 −mε,2) (∂vfε,1 − ∂vfε,2)ψR(x, v) dx dv dt (65)

+ 2
∫ T

0

∫
Rn+1

(rε1 − rε2)(fε,1 − fε,2)ψR(x, v) dx dv dt (66)

As in the proof of proposition 19, first we let ε go to 0, and then R→∞. Then:

• (61) goes to∫
Rn+1

|f1 − f2|2(T, x, v) dx dv =
∫

Rn+1
|f1 − f2|(T, x, v) dx dv

for almost every T > 0 since fi = χ(v, ui), and (62) goes to∫
Rn+1

|f1 − f2|2(t = 0, x, v) dx dv =
∫

Rn+1
|f1 − f2|(t = 0, x, v) dx dv

thanks to the continuity assumption at time t = 0.
• (63) goes to 0 according to assumptions (3),(56).
• (64) is bounded uniformly in ε by

2
[
sup(µ1

T+1(R− 1), µ1
T+1(−R + 1)) + [sup(µ2

T+1(R− 1), µ2
T+1(−R + 1))

]
−→
R→∞

0

where µi
T is the function that occurs in the bound (52) for mi.

• (66) goes to 0 as ε→ 0 for each R > 0 according to lemma 18.
• In (65), we have

∂vfε,1 − ∂vfε,2 = [δ(v) ∗ ϕε − δ(v − u1(t, x)) ∗ ϕε]

− [δ(v) ∗ ϕε − δ(v − u2(t, x)) ∗ ϕε]

= δ(v − u2(t, x)) ∗ ϕε − δ(v − u1(t, x)) ∗ ϕε
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Hence (65) is equal to

2
∫ T

0

∫
Rn+1

(mε,1 −mε,2) (δ(v − u1) ∗ ϕε − δ(v − u2) ∗ ϕε)ψR(x, v) dx dv dt

≤ 2
∫ T

0

∫
Rn+1

(mε,1 δ(v − u1) ∗ ϕε +mε,2 δ(v − u2) ∗ ϕε)ψR(x, v) dx dv dt

and the right-hand side of the above inequality goes to 0 as ε → 0 for all R > 0
according to proposition 19.

Consequently, passing to the limit in (61)-(66) yields∫
Rn+1

|f1 − f2|(T, x, v) dx dv ≤
∫

Rn+1
|f1 − f2|(t = 0, x, v) dx dv

for almost every T > 0, which is the desired inequality. 2
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