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Abstract

We are interested here in describing the linear response of a rapidly rotating fluid to some surface stress, possibly
due to the wind. The distinctive feature of the model considered here lies in the fact that the stress admits fast
time oscillations and may be resonant with the Coriolis force. In addition to the usual Ekman layer, we exhibit
another - much larger - boundary layer, and some global vertical profile. We prove in particular that for large
times, the wind effect is no longer localized in the vicinity of the surface.

Résumé

Forçage résonnant de fluides océaniques
Cette note est consacrée à la description des effets d’un forçage surfacique, par exemple dû au vent, sur des

fluides en rotation rapide dont l’évolution est régie par une équation linéaire. La particularité de l’analyse menée
ici réside dans le caractère fortement oscillant en temps du vent, qui peut alors entrer en résonance avec la force
de Coriolis. En particulier, la taille des couches limites dûes au forçage résonnant est beaucoup plus grande que
celle des couches d’Ekman habituelles, et il apparâıt un profil vertical singulier, qui, en temps grand, n’est pas
localisé dans un voisinage de la surface.

Version française abrégée

Dans cette note, on étudie le comportement asymptotique d’un système linéaire de type Navier-Stokes-
Coriolis, qui modélise l’évolution des courants océaniques ; précisément, on considère la solution u du
système
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∂tu+
1
ε
e3 ∧ u−∆hu− ν∂zzu+∇p = 0, t > 0, xh ∈ T2, z ∈ [0, 1],

∇ · u = 0,
muni des conditions aux bords

u|z=0 = 0, u3|z=1 = 0, ∂zuh|z=1(t, xh) = βσ

(
t

ε
, xh

)
,

u|t=0 = γ,

où β > 0, T2 = (R/2πZ)2, et où le forçage (modélisé par σ) est une fonction régulière, presque périodique
en temps et T2−périodique en xh.

On s’intéresse ici à l’influence du vent, plus particulièrement lorsqu’il présente des oscillations rapides à
des fréquences égales à celle de la rotation de la Terre. On montre alors que le forçage σ, s’il est résonnant,
génère des couches limites de taille bien supérieure à celle des couches d’Ekman habituelles. De plus, pour
des profils particuliers de la fonction σ, l’ensemble du fluide est déstabilisé en temps grand (voir [2]).

Une analyse multi-échelles formelle montre que l’opérateur de Coriolis L, défini par

L : u 7→ e3 ∧ u+∇p, où p vérifie

{
div (e3 ∧ u+∇p) = 0,
∂zp|z=0 = ∂zp|z=1 = 0,

engendre des oscillations temporelles à des fréquences d’ordre ε−1. On s’attend donc à ce qu’il existe une
fonction ū(t) telle que la solution u du système linéaire ci-dessus se comporte comme exp(−tL/ε)ū(t).

Le résultat principal est le suivant :
Théorème 0.1 On suppose que les hypothèses (3)-(4) sont vérifiées. Soit γ ∈ L2(T2×[0, 1]), à divergence
nulle et flux nul. Soit u ∈ C(R+, L2(T2× [0, 1]))∩L2

loc(R+, H1(T2× [0, 1])) l’unique solution du système
linéaire, et soit ū ∈ C(R+, L2(T2 × [0, 1])) ∩ L2(R+, H

1
h(T2 × [0, 1])) la solution du système

∂tū−∆hū+
√
ν

ε
SEkman(ū) = 0, div ū = 0,

ū|t=0 = γ, ū3|z=0 = ū3|z=1 = 0,

où SEkman est un opérateur linéaire, continu, positif sur le sous-espace de L2(T2 × [0, 1]) constitué des
fonctions à divergence et flux nuls (voir [1] pour une définition précise). Alors lorsque ε, ν → 0,

u(t)− exp
(
− t
ε
L

)
ū(t)→ 0 dans L∞loc(R+, L2) ∩ L2

loc(R+, H1
h).

La preuve de ce résultat repose sur une méthode d’énergie classique (voir [1]), qui permet d’estimer
la différence entre la fonction u et une solution approchée explicite : cette approximation est obtenue
comme la somme du terme principal exp(−tL/ε)ū(t), de termes de couches limites, et de termes correctifs
intérieurs. Le rôle de ces termes correcteurs, petits en norme L2, est de faire en sorte que la solution
approchée satisfasse le système linéaire avec des termes d’erreur suffisamment petits pour obtenir de la
convergence forte.

1. Introduction

This note is devoted to the asymptotic analysis as ε, ν → 0 of the linear system

∂tu+
1
ε
e3 ∧ u−∆hu− ν∂zzu+∇p = 0, t > 0, xh ∈ T2, z ∈ [0, 1],

∇ · u = 0,
(1)
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supplemented with the boundary conditions

u|z=0 = 0, u3|z=1 = 0, ∂zuh|z=1(t, xh) = βσ

(
t

ε
, xh

)
,

u|t=0 = γ,

(2)

where β is a positive number, σ := σ(τ, xh) is some smooth function, periodic in xh and almost periodic
in τ , and T2 = [0, 2π)2 denotes the two-dimensional torus.

This system is a linear version of the Navier-Stokes-Coriolis equations, which describe the motion of
oceanic currents. Here, we focus on the influence of the wind-stress σ on the global oceanic circulation.
More precisely, we are interested in the effects of a resonant forcing, i.e. of a wind oscillating with the
same period as the rotation of the Earth. In contrast with the non-resonant case, which was studied
by Desjardins and Grenier [3] and then by Masmoudi [5], we prove that the forcing on resonant modes
creates boundary layers which are much larger than the usual ones, and may furthermore destabilize the
whole fluid inside the domain for large times.

2. Main results and strategy

A formal multiscale analysis of (1) shows that the Coriolis operator L, defined by L := P(e3 ∧ ·), where
P is the orthogonal projection of L2(T2 × [0, 1]) onto the subspace

V0 := {u ∈ L2(T2 × [0, 1]) / ∇ · u = 0 and u3|z=0 = u3|z=1 = 0},

generates fast time oscillations, at frequencies of order 1/ε. More precisely, one can prove (see for instance
[1]) that there exists a hilbertian basis of V0, denoted by (Nk)k∈Z3\{0}, constituted of eigenvectors of the
linear penalization: for all k ∈ Z3 \ {0}, we have

LNk = P(e3 ∧Nk) = iλkNk, where λk = − k3π√
|kh|2 + (πk3)2

.

We therefore expect u to behave like some function exp(−tL/ε)ū(t).
In order to understand the evolution with respect to the slow time variable, the idea is then to get rid

of the penalization term by filtering out the oscillations in equation (1) (see [4,6]), that is, by composing
equation (1) by the Coriolis semi-group exp(tL/ε). The filtered function uL(t) := exp(tL/ε)u(t) satisfies
a linear equation with vanishing viscosity (and without any penalization term); passing to the limit in
the latter yields the so-called ‘envelope equation’ (see (5) below).

Assumptions on the wind-stress σ. Without any loss of generality, since the equation is linear, we
will assume that σ has a finite number of Fourier modes, i.e.

∃M ⊂ R, |M | <∞, ∃N ∈ N, ∀(τ, xh), σ(τ, xh) =
∑
µ∈M

∑
kh∈Z2,
|kh|≤N

σ̂(µ, kh)eiµτeikh·xh . (3)

We further require that the strength of the wind-stress is not too large, namely

∃(α0, α1) ∈ R2, α0 < 7/12, α1 > 1/4, β = O
(
ν−α0εα1

)
. (4)

Then the following result holds:
Theorem 2.1 Let γ ∈ V0, and let u ∈ C(R+, V0) ∩ L2

loc(R+, H1(T2 × [0, 1])) be the unique solution of
(1)-(2). Let ū ∈ C(R+, V0) ∩ L2(R+, H

1
h(T2 × [0, 1])) be given by
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∂tū−∆hū+
√
ν

ε
SEkman(ū) = 0,

ū|t=0 = γ,

(5)

where the operator SEkman : V0 → V0 is linear, positive and continuous (see [1] for a precise definition).
Then under assumptions (3), (4), as ε, ν → 0,

u(t)− exp
(
− t
ε
L

)
ū(t)→ 0 (6)

in L∞loc(R+, L2(T2 × [0, 1])) ∩ L2
loc(R+, L2(T2 × [0, 1])).

Remark 1 (i) The above theorem holds for all values of the ratio ε/ν, but the asymptotic behaviour of
ū depends on the relative values of ε, ν. In particular, if ν/ε→∞, then all modes such that kh 6= 0 in ū
vanish as exp(−ckt

√
ν/ε), due to the positivity of the operator SEkman.

(ii) If the forcing σ bears on resonant modes only, namely if

σ(τ, xh) = σ̂+eiτ (1, i) + σ̂−e−iτ (1,−i),

then we are able to prove a global result: in this case, let

using(t, xh, z) =
β

2

∑
±

∑
k3∈2Z+1

(
2
k3π

)2

(−1)
k3−1

2 σ̂± sin
(π

2
k3z
)
e±i

t
ε

[
1− e−νk

2
3t
]

(1,±i, 0). (7)

Then

u(t)−
[
exp

(
− t
ε
L

)
ū(t) + using(t)

]
→ 0 (8)

in L∞(R+, L2(T2 × [0, 1])) ∩ L2(R+, L2(T2 × [0, 1])). In particular, for large times, u(t) ≈ using(t) ∼ β.
Since β may be very large, there is a destabilization of the whole fluid inside the domain as t→∞.

(iii) Notice that the two convergences (6) and (8) are compatible, since with assumption (4), using =
O(ν3/4β) = o(1) in L2([0, T ]×T2 × [0, 1]), ∀T > 0.

3. Elements of proof

The strategy of proof follows that developed in [1]: since we intend to prove a strong convergence result,
the idea is to construct an approximate solution, which is the sum of the principal term exp(−tL/ε)ū(t),
of boundary layer terms and of corrector interior terms, and which satisfies the system (1)-(2) with
sufficiently small error terms. The convergence then follows from a standard energy method.

Notice that the linearity of the equation allows us to use a superposition principle, so that it is sufficient
to prove Theorem 2.1 for the solution ubottom of (1)-(2) with ubottom|t=0 = γ, ∂zubottomh|z=1 = 0 on the one hand,
and for the solution utop of (1)-(2) with utop|t=0 = 0, ∂zu

top
h|z=1 = βσ on the other. Concerning the term

ubottom, the proof of convergence can be found in [1,5]; in this case, the main point lies in the construction
of boundary layer terms, which restore the horizontal boundary conditions violated by exp(−tL/ε)ū(t)
at z = 0. The typical size of the boundary layers is then

√
εν.

Thus the study of the asympotic behaviour of utop is the main novelty of this work. We only sketch the
main steps of the proof here, and we refer to [2] for details. Note that because utop|z=0 = 0, we expect the
main term of the approximation to be zero. Let us also emphasize that there is no Ekman pumping term
due to the wind in the envelope equation (5) because of assumption (4): indeed, the amplitude of the
Ekman pumping is νβ, which is o(1) in our case. Therefore, we only have to build boundary and interior
correctors.
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3.1. The boundary layer and the singular profile

First, we define a boundary layer term uBL which matches the horizontal boundary conditions at z = 1,
and which takes the form

uBL(t, xh, z) = β
√
εν
∑
µ∈M

∑
kh

∑
±
λ±(µ, kh)−1 exp

(
i
µt

ε
+ ikh · xh −

(1− z)λ±(µ, kh)√
εν

)
ûBL± (µ, kh),

where <(λ±(µ, kh)) > 0 and ûBL± (µ, kh), to be chosen later, is O(1) and such that div uBL = 0. Inserting
this expression into (1), we infer that the decay rate λ±(µ, kh) is obtained as a solution of the equation

det

iµ− λ
2 + εk2

h +
ενk1k2

λ2 − ενk2
h

−1− ενk2
1

λ2 − ενk2
h

1 +
ενk2

2

λ2 − ενk2
h

iµ− λ2 + εk2
h −

ενk1k2

λ2 − ενk2
h

 = 0.

Explicit calculations then lead to the following results:
– If |µ| 6= 1, we infer that λ(µ, kh) is bounded away from zero.
– If |µ| = 1 and kh 6= 0, we prove that there exists a constant C ≥ 1 such that

C−1
[
(εν)1/4 +

√
ε
]
≤ |λ(µ, kh)| ≤ C

[
(εν)1/4 +

√
ε
]
. (9)

As a consequence, the size of the boundary layer for these ‘quasi-resonant modes’ is of order (εν)1/4,
which is much larger than the size of the classical Ekman layers.

– If |µ| = 1 and kh = 0, a thorough analysis shows that the boundary condition cannot be absorbed
entirely in some boundary layer, no matter how large. Hence, our treatment of these modes is slighlty
different, and we define a function ustat by

ustat(t, xh, z) =
β

2
z
∑
±

(σ̂1(±1, 0)∓ iσ̂2(±1, 0)) exp
(
±i t
ε

)
(1,±i, 0).

Since ustat|t=0 does not vanish, we consider the solution uosc of (1), supplemented with the initial condition
uosc|t=0 = −ustat|t=0, together with homogeneous boundary conditions at z = 0 and z = 1; the singular term
using is then obtained as the sum of ustat and uosc. Moreover, exp(tL/ε)uosc satisfies a heat equation
with homogeneous boundary conditions, so that explicit calculations are tractable in Fourier space, and
lead to expression (7).

3.2. The interior terms and the equation for the mean motion

In the second step, we take into account the vertical boundary conditions at z = 0 and z = 1. Notice that
in general, the divergence-free property prevents uBL from satisfying the no-flux boundary conditions.
Precisely, the third component of uBL is of order β(εν)

1
4 in L2(T2). Thus, an interior corrector uint

is introduced, which restores the Dirichlet boundary condition on the vertical component, and which
satisfies the evolution equation up to error terms which are o(1) in L2. The explicit construction is as
follows: we set uint = vint + δuint, where

vint3 (t, xh, z) = −zuBL3 (t, xh, 1),

vinth (t, xh, z) = ∇h∆−1
h uBL3 (t, xh, 1),

and
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∂tδu
int +

1
ε
Pδuint −∆hδu

int = −PK
[
∂tv

int +
1
ε
e3 ∧ vint −∆hv

int

]
,

δuint|t=0 = 0,

where PK is the L2 projection on the vector space generated by {Nk, |k| ≤ K}. The truncation parameter
K is chosen so that uint is a solution of equation (1) with a small error term, and the term δuint is small
in Hs norm for some s > 3/2. A careful analysis shows that K depends on ε and ν; this dependance
ultimately prescribes the scaling condition (4).

When constructing the approximate solution for ubottom, the envelope equation (5) is obtained precisely
at this step, by filtering the part of vint which is resonant with the main term exp(−tL/ε)ū(t).

3.3. Iterating the approximation process

The horizontal component of the interior term uint constructed above does not vanish at z = 0; whence,
other boundary layer terms, of lower order than uBL, must be defined so as to restore the horizontal
boundary conditions. In fact, constructing merely one additional boundary layer term is not sufficient
to jump to a conclusion, and we must apply several times the two first steps described above. After a
few iterations, the remaining boundary terms are of order o(ε) in Hs(T2) for all s, which allows us to
complete the proof of convergence thanks to the following Lemma:
Lemma 3.1 (Stopping condition) Let δ0, δ1 ∈ L∞(R+, H3(T2)) be two families such that

∫
T2 δi,3 = 0

and ‖δi‖L∞(R+,H3(T2)) = o(ε), ‖∂tδi‖L∞(R+,H3(T2)) = o(1).
Then there exists a family w ∈ L∞(R+, L2(T2 × [0, 1])) with ∇ · w = 0 such that

w|z=0 = δ0, w3|z=1 = δ1,3 and ∂zwh|z=1 = δ1,h

and satisfying the following estimates

‖w‖L2(T2×[0,1]) → 0 and
∥∥∥∥∂tw +

1
ε
Lw − ν∂zzw −∆hw

∥∥∥∥
L2(T2×[0,1])

→ 0 as ε→ 0.
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