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Abstract

We consider the homogenization of the Navier-Stokes equation, set in a channel with
a rough boundary, of small amplitude and wavelength ε. It was shown recently that,
for any non-degenerate roughness pattern, and for any reasonable condition imposed at
the rough boundary, the homogenized boundary condition in the limit ε = 0 is always
no-slip. We give in this paper error estimates for this homogenized no-slip condition, and
provide a more accurate effective boundary condition, of Navier type. Our result extends
those obtained in [6, 13], in which the special case of a Dirichlet condition at the rough
boundary was examined.
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1 Introduction

Most works on Newtonian liquids assume the validity of the no-slip boundary condition: the
velocity field of the liquid at a solid surface equals the velocity field of the surface itself.
This assumption relies on both theoretical and experimental studies, carried over more than
a century.

Still, with the recent surge of activity around microfluidics, the question of fluid-solid
interaction has been reconsidered, and the consensus around the no-slip condition has been
questioned. Several experimentalists, observing for instance water over mica, have reported
significant slip. More generally, it has been claimed that, in many cases, the liquid velocity
field u obeys a Navier condition at the solid boundary Σ:

(Id − ν ⊗ ν)u|Σ = λ(Id − ν ⊗ ν)D(u)ν|Σ, u · ν|Σ = 0, λ > 0 (Na)

where ν is an inward normal vector to Σ, and D(u) is the symmetric part of the gradient. Slip
lengths λ up to a few micrometers have been measured. This is far more than the molecular
scale, and would therefore invalidate the (macroscopic) no-slip condition

u|Σ = 0. (Di)

Nevertheless, such experimental results are widely debated. For similar experimental settings,
there are huge discrepancies between the measured values of λ. We refer to the article [18]
for an overview.
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In this debate around boundary conditions, the irregularity of the solid surface is a major
issue. Again, its effect is a topic of intense discussion. On one hand, some people argue
that it increases the surface of friction, and may cause a decrease of the slip. On the other
hand, it may generate small scale phenomena favourable to slip. For instance, some rough
hydrophobic surfaces seem more slippery due to the trapping of air bubbles in the humps of
the roughness. Moreover, irregularity creates a boundary layer in its vicinity, meaning high
velocity gradients. Thus, even though (Di) is satisfied at the rough boundary, there may be
significant velocities right above. In other words, the no-slip condition may hold at the small
scale of the boundary layer but not at the large scale of the mean flow. This phenomenon,
due to scale separation, is called apparent slip in the physics litterature.

In parallel to experimental works, several theoretical studies have been carried, so as
to clarify the role of roughness. Many of them relate to homogenization theory. First,
the irregularity is modeled by small-scale variations of the boundary. Then, an asymptotic
analysis is performed, as the small scales go to zero. The idea is to replace the constitutive
boundary condition at the rough surface by a homogenized or effective boundary condition at
the smoothened surface. In this way, one can describe the averaged effect of the roughness.
We stress that such homogenized conditions (often called wall laws) are also of practical
interest in numerical codes. They allow to filter out the small scales of the boundary, which
have a high computational cost.

Let us recall briefly the main mathematical results on wall laws. To give a unified descrip-
tion, we take a single model. Namely, we consider a two-dimensional rough channel

Ωε := Ω ∪ Σ ∪Rε

where Ω = R×(0, 1) is the smooth part, Rε is the rough part, and Σ = R×{0} their interface.
We assume that the rough part has typical size ε, that is

Rε := εR, R := {y, 0 > y2 > ω (y1)}

for a Lipschitz function ω : R 7→ (−1, 0). We also introduce

Γε := εΓ, Γ := {y, y2 = ω (y1)}

See Figure 1 for notations. We consider in this channel a steady flow uε. It is modeled by the
stationary Navier-Stokes system, with a prescribed flux φ across a vertical cross-section σε of
Ωε. Moreover, to cover all interesting cases, we shall consider either pure slip, partial slip or
no-slip at the rough boundary Γε. This means that the constant λ below shall be either +∞,
positive or zero. For simplicity, we assume no-slip at the upper boundary. We get eventually

−∆uε + uε · ∇uε +∇pε = 0, x ∈ Ωε,

div uε = 0, x ∈ Ωε,

uε|x2=1 = 0,
∫
σε
uε1 = φ,

(Id − ν ⊗ ν)uε|Γε = λε(Id−ν ⊗ ν)D(uε)ν|Γε , uε · ν|Γε = 0.

(NSε)

Notice that the flux integral in the third equation does not depend on the location of the cross-
section σε, thanks to the divergence-free and impermeability conditions. We also emphasize
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Figure 1: The rough domain Ωε.

that this problem has a singularity in ε, due to the high frequency oscillation of the boundary.
Thus, the problem is to replace the singular problem in Ωε by a regular problem in Ω. The
idea is to keep the same Navier-Stokes equations

−∆u+ u · ∇u+∇p = 0, x ∈ Ω,
div u = 0, x ∈ Ω,

u|x2=1 = 0,
∫
σ
u1 = φ,

(NS)

but with a boundary condition at the artificial boundary Σ which is regular in ε. The problem
is to find the most accurate condition.

A series of papers has addressed this problem, starting from the standard Dirichlet con-
dition at Γε (λε = 0 in (NSε)). Losely, two main facts have been established:

1. For any roughness profile ω, the Dirichlet condition (Di) provides a O(ε) approximation
of uε in L2

uloc(Ω).

2. For generic roughness profile ω, the Navier condition does better, choosing λ = αε for
some good constant α in (Na).

Of course, such statements are only the crude translations of cumulative rigorous results.
Up to our knowledge, the pioneering results on wall laws are due to Achdou, Pironneau and
Valentin [1, 3], and Jäger and Mikelic [14, 15], who considered periodic roughness profiles
ω. See also [4] on this periodic case. The extension to arbitrary roughness profiles has been
studied by the second author (and coauthors) in articles [6, 12, 13]. The expression generic
roughness profile means functions ω with ergodicity properties (for instance, ω is random
stationary, or almost periodic). We refer to the forementioned works for all details and
rigorous statements. Let us just mention that the slip length α ε is related to a boundary
layer of amplitude ε near the rough boundary. It is the mathematical expression of the
apparent slip discussed earlier.

Beyond the special case λε = 0, some studies have dealt with the general case λε ∈ [0,+∞].
The limit u0 of uε, and the condition that it satisfies at Σ have been investigated. In brief,
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the striking conclusion of these studies is that, as soon as the boundary is genuinely rough,
u0 satisfies a no-slip condition at Σ. This idea has been developped in [9] for a periodic
roughness pattern ω. It has been generalized to arbitrary roughness pattern in [8]. In this
last article, the assumption of genuine roughness is expressed in terms of Young measure.
When recast in our 2D setting, it reads:

(H) The family of Young measures
(
dµy1

)
y1

associated with the sequence
(
ω′(·/ε)

)
ε

is s.t.

dµy1 6= δ0 (the Dirac mass at zero), for almost every y1 ∈ R.

Under (H), one can show that uε locally converges in H1-weak to the famous Poiseuille flow:

u0(x) =
(
U0(x2), 0

)
, U0(x2) = 6φx2(1− x2)

which is solution of (NS)-(Di). We refer to [8] for all details.

This result can be seen as a mathematical justification of the no-slip condition. Indeed,
any realistic boundary is rough. If one is only interested in scales greater than the scale ε
of the roughness, then (Di) is an appropriate boundary condition, whatever the microscopic
phenomena behind. Still, as in the case λε = 0, one may be interested in more quantitative
estimates. How good is the boundary condition? Can it be improved? Is there possibility
of a O(ε) slip? Such questions are especially important in microfluidics, a domain in which
minimizing wall friction is crucial (see [23]).

The aim of the present article is to address these questions. We shall extend to an arbitrary
slip length λε the kind of results obtained for λε = 0. Of course, as in the works mentioned
above, we must assume some non-degeneracy of the roughness pattern. We make the following
assumption:

(H’) There exists C > 0, such that for all 2-D fields u ∈ C∞c
(
R
)

satisfying u · ν|Γ = 0,

‖u‖L2(R) ≤ C ‖∇u‖L2(R).

Assumption (H’), and its relation to the assumption (H) will be discussed thoroughly in the
next section. Broadly, we obtain two main results. The first one is

Theorem 1. There exists φ0 > 0, such that for all |φ| < φ0, for all ε ≤ 1, system (NSε) has
a unique solution uε in H1

uloc(Ω
ε). Moreover, if λε = 0 or if (H’) holds, one has

‖uε − u0‖H1
uloc(Ω

ε) ≤ C φ
√
ε, ‖uε − u0‖L2

uloc(Ω) ≤ C φε,

where u0 is the Poiseuille flow, satisfying (NS)-(Di).

In short, the Dirichlet wall law provides a O(φ ε) approximation of the exact solution uε in
L2
uloc(Ω), for any λε ∈ [0,+∞]. This gives a quantitative estimate of the convergence results

obtained in the former papers. Note that the dependence of the error estimates on both φ
and ε is specified. In the case λε = 0, this improves slightly the result of [6], where the φ
dependence was neglected.

Our second result is the existence of a better homogenized condition. Here, as outlined
in article [13], some ergodicity property of the rugosity is needed. We shall assume that ω is
a random stationary process. Moreover, we shall need a slight reinforcement of (H’), namely:

4



(H”) There exists C > 0, such that for all 2-D fields u ∈ C∞c
(
R
)

satisfying u · ν|Γ = 0,

‖u‖L2(R) ≤ C ‖D(u)‖L2(R), D(u) =
1
2
(
∇u+ (∇u)t

)
.

We shall discuss this assumption in section 2. We state

Theorem 2. Let ω be an ergodic stationary random process, with values in (−1, 0) and K-
Lipschitz almost surely, for some K > 0. Assume either that λε = 0, or that λε = λ0 > 0 for
all ε, and the non-degeneracy condition (H”) holds almost surely, with a uniform C. Then
there exists α > 0 and φ0 > 0 such that, for all |φ| < φ0, ε ≤ 1, the solution uN of (NS)-(Na)
with λ = α ε satisfies(

sup
R≥1

1
R

∫
Ω∩{|x1|<R}

|uε − uN |2 dx

)1/2

= o(ε), almost surely.

We quote that the norm above is common in the framework of stochastic pde’s: see for
instance [5]. We also quote that, even in the case λε = 0, this almost sure estimate is new: the
estimates of [6] involved expectations. This result can also be extended to other slip lengths
λε in (NSε); more precisely, up to a few minor modifications, our techniques also allow us to
treat slip lengths λε such that λε � 1, or λε . ε2, or λε = λ0ε.

Briefly, the outline of the paper is as follows. In section 2, we will discuss in details the
hypotheses (H’) and (H”). Section 3 will be devoted to the proof of theorem 1. In section 4,
we will analyze the boundary layer near the rough boundary. This will allow for the proof of
Theorem 2, to be achieved in section 5.

2 The non-degeneracy assumption

The goal of this section is to discuss hypotheses (H’) and (H”), and, in particular, to give
sufficient conditions on the function ω for (H’) and (H”) to hold. We will also discuss the
optimality of these conditions in the periodic, quasi-periodic and stationary ergodic settings,
and compare them to assumption (H).

2.1 Poincaré inequalities for rough domains: assumption (H’)

First, let us recall that if the non-penetration condition u · ν|Γ = 0 is replaced by a no-slip
condition u|Γ = 0, then the Poincaré inequality holds: indeed, for all u ∈ H1(R) such that
u|Γ = 0, we have

∫
R
|u(y1, y2)|2dy1 dy2 =

∫
R

∣∣∣∣∣
∫ y2

ω(y1)
∂2u(y1, t)dt

∣∣∣∣∣
2

dy1 dy2

≤ C

∫
R
|∂2u(y1, t)|2dy1 dt,

where the constant C depends only on ‖ω‖L∞ .
Assumption (H’) requires that the same inequality holds under the mere non-penetration

condition; of course, such an inequality is false in general (we give a counter-example below in
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the case of a flat bottom). In fact, (H’) is strongly related to the roughness of the boundary: if
the function ω is not constant, then the inward normal vector ν = (1 +ω′2)−1/2(−ω′, 1) takes
different values. Since u ·ν|Γ = 0, we have a control of u in several directions at the boundary
(at different points of Γ). In fine, this allows us to prove that the Poincaré inequality holds,
and the arguments are in fact close to the calculations of the Dirichlet case recalled above.
• We now derive a sufficient condition for (H’):

Lemma 3. Let ω ∈W 1,∞(R) with values in (−1, 0) and such that supω < 0. Assume that

∃A > 0, inf
y1∈R

∫ A

0
|ω′(y1 + t)|2dt > 0. (2.1)

Then assumption (H’) is satisfied.

Proof. The idea is to prove that for some well-chosen number B > 0, there holds∫
R
|u(y)|2dy ≤ CB

∫
R

∫ B

0
|u(y1, y2) · ν(y1 + t)|2 dt dy1 dy2 (2.2)

≤ CB

∫
R
|∇u(y)|2 dy. (2.3)

The first inequality is a direct consequence of assumption (2.1). The proof of the second one
follows arguments from [9], and is in fact close to the proof of the Poincaré inequality in the
Dirichlet case.

First, for all B > 0, we have∫
R

∫ B

0
|u(y1, y2) · ν(y1 + t)|2 dt dy1 dy2

=
∫
R

∫ B

0

1
1 + ω′2(y1 + t)

(
−u1(y)ω′(y1 + t) + u2(y)

)2
dt dy1 dy2

≥ 1
1 + ‖ω′‖2∞

[∫
R
dy u2

1(y)
∫ B

0
ω′(y1 + t)2dt+B

∫
R
u2

2

−2
∫
R
u1(y)u2(y)(ω(y1 +B)− ω(y1)) dy

]
≥ 1

1 + ‖ω′‖2∞
inf
(
B − ‖ω‖∞, inf

y1∈R

∫ B

0
ω′(y1 + t)2dt− ‖ω‖∞

)∫
R
|u(y)|2 dy.

Assume that B > A, and set

α := inf
y1∈R

∫ A

0
|ω′(y1 + t)|2dt.

Notice that α > 0 thanks to (2.1). Then

inf
y1∈R

∫ B

0
ω′(y1 + t)2dt ≥

⌊
B

A

⌋
α,

and thus there exists a positive constant c such that for all B > A,∫
R

∫ B

0
|u(y1, y2) · ν(y1 + t)|2 dt dy1 dy2 ≥ c(B − 1)

∫
R
|u(y)|2 dy.
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Thus for B large enough, inequality (2.2) is satisfied.
As for (2.3), let us now prove that for all B > 0, there exists a constant CB such that∫

R

∫ B

0
|u(y1, y2) · ν(y1 + t)|2 dt dy1 dy2 ≤ CB

∫
R
|∇u(y)|2 dy.

We use the same kind of calculations as in [9]. The idea is the following: for all y ∈ R,
t ∈ [0, B], let

z = (y1 + t, ω(y1 + t)) ∈ Γ.

Let `y,t be a path in W 1,∞([0, 1],R2) such that `y,t(0) = y, `y,t(1) = z and `y,t(τ) ∈ R for all
τ ∈ (0, 1). Then

u(y)− u(z) =
∫ 1

0

(
`′y,t(τ) · ∇

)
u(`y,t(τ)) dτ,

and thus, since u(z) · ν(y1 + t) = 0,

|u(y) · ν(y1 + t)| ≤
∫ 1

0

∣∣(`′y,t(τ) · ∇
)
u(`y,t(τ))

∣∣ dτ dt dy.
There remains to choose a particular path `y,t.

Notice that in general, we cannot choose for `y,t the straight line joining y and z, since
the latter may cross the boundary Γ. We thus make the following choice: for λ ∈ (supω, 0),
we set

z′λ := (y1, λ),
z′′λ := (y1 + t, λ).

We define the path `y,t by

`y,t(0) = y, `y,t

(
1
3

)
= z′λ, `y,t

(
2
3

)
= z′′λ, `y,t (1) = z,

and `y,t is a straight line on each segment [0, 1/3], [1/3, 2/3], [2/3, 1] (see Figure 2).
Notice that `y,t depends in fact on λ, although the dependance is omitted in order not to

burden the notation. With this choice, we have

|u(y) · ν(y1 + t)| ≤
∫

[y2,λ]
|∂2u|(y1, y

′
2) dy′2

+
∫ t

0
|∂1u|(y1 + y′1, λ) dy′1

+
∫ λ

ω(y1+t)
|∂2u|(y1 + t, y′2) dy′2

≤
∫ 0

ω(y1)
|∂2u|(y1, y

′
2) dy′2 +

∫ B

0
|∂1u|(y1 + y′1, λ) dy′1

+
∫ 0

ω(y1+t)
|∂2u|(y1 + t, y′2) dy′2.

Integrating with respect to y and t, we obtain, for all λ ∈ (supω, 0)∫
y∈R

∫ B

0
|u(y) · ν(y1 + t)|2 dy dt ≤ CB

(∫
R
|∂2u|2(y) dy +

∫
R
|∂1u|2(y1, λ) dy1

)
.

Integrating once again with respect to λ yields the desired inequality.
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Figure 2: The path `y,t.

• Let us now examine in which case assumption (2.1) is satisfied in the periodic, quasi-
periodic and stationary ergodic settings: first, if ω is T-periodic, where T := R/Z, then (2.1)
merely amounts to ∫

T
ω′

2
> 0.

Hence (H’) holds as soon as the lower boundary is not flat. In this case assumption (2.1) is
necessary, as shows the following example: assume that ω ≡ −1, and consider the sequence
(uk)k≥1 in H1(R) defined by uk,2 ≡ 0 and

uk,1(y) =
{

1 if |y1| ≤ k,
0 if |y1| ≥ k + 1,

and uk,1(y) ∈ [0, 1] for all y, ‖∇uk,1‖L∞ ≤ 2.
Then it is easily checked that uk · ν|Γ = 0, and that

‖uk‖L2(R) ≥ 2k.

On the other hand,

‖∇uk‖2L2(R) =
∫
k≤y1≤k+1

|∇uk|2 ≤ 8 ∀k ≥ 1.

Hence assumption (H’) cannot hold in R.
In the quasi-periodic case, the situation is similar to the one of the periodic case, i.e.

(2.1) ⇐⇒ ω′ 6= 0.

Indeed, assume that
ω(y1) = F (λy1)

for some λ ∈ Rd, F ∈ C2(Td), with d ≥ 2 arbitrary. Then∫ A

0
ω′

2(y1 + t) dt =
∫ A

0
(λ · ∇F )2(λ(y1 + t)) dt.
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Write F as a Fourier series:

F (Y ) =
∑
k∈Zd

ake
2iπk·Y ∀Y ∈ Td.

Then∫ A

0
(λ · ∇F )2(λ(y1 + t)) dt = −2π

∑
k,l∈Zd,

λ·(k+l)6=0

akal (λ · k) (λ · l)e2iπ(k+l)·λy1 e
2iπ(k+l)·λA − 1
i(k + l) · λ

+4π2A
∑

k,l∈Zd,
λ·(k+l)=0

akal(λ · k)2.

The first term is bounded uniformly in y1 and A provided the sequence ak is sufficiently
convergent and λ satisfies a diophantine condition. Consequently, setting

C0 = 4π2
∑

k,l∈Zd,
λ·(k+l)=0

akal(λ · k)2,

we deduce that there exists a constant C such that

∀A > 0, ∀y1 ∈ R, C0A− C ≤
∫ A

0
ω′

2(y1 + t) dt ≤ C0A+ C.

The above inequality entails that C0 ≥ 0. If C0 > 0, inequality (2.1) is proved. If C0 = 0, we
infer that ∫

R
ω′

2
<∞.

As a consequence, since ω′ is uniformly continuous on R, lim|t|→∞ ω′(t) = 0. On the other
hand, it can be proved thanks to classical arguments that for all ε > 0, N > 0, there exists
n ∈ N such that n > N and

d(λn,Zd) ≤ ε.

For ε small and N large, and t in a fixed and arbitrary bounded set, we obtain

ω′(t+ n) = o(1)
= λ · ∇F (λt+ λn)
= λ · ∇F (λt) + o(1)
= ω′(t) + o(1).

Thus ω′(t) = 0, and ω′ ≡ 0.
Hence we deduce that (2.1) is satisfied as soon as ω′ is not identically zero, at least for

“generic” quasi-periodic functions (i.e. such that the Fourier coefficients of the underlying
periodic function are sufficiently convergent and such that λ satisfies a diophantine condition).
In fact, slightly more refined arguments (which we leave to the reader) show that the result
remains true as long as ∑

k∈Zd
|k| |ak| <∞,
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without any assumption on λ.
Let us now give give another formulation of (2.1) in the stationary ergodic case. We

denote by (M,µ) the underlying probability space, and by (τy1)y1∈R the measure-preserving
transformation group acting on M . We recall that there exists a function F ∈ L∞(M) such
that

ω(y1,m) = F (τy1m), y1 ∈ R, m ∈M.

As in [6], we define the stochastic derivative of F by

∂mF (m) := ω′(0,m) ∀m ∈M,

so that ω′(y1,m) = ∂mF (τy1m) for (y1,m) ∈ R×M. We claim that almost surely in m ∈M ,

inf
y1∈R

∫ A

0
|ω′(y1 + t,m)|2 dt = essinfm′∈M

∫ A

0
|∂mF (τtm′)|2 dt.

Indeed, notice that the left-hand side is invariant under the transformation group (τz1)z1∈R
as a function of m ∈M . As a consequence, it is constant (almost surely) over M ; we denote
by φ the value of the constant. Since ω′ ∈ L∞, we also have

φ = inf
y1∈Q

∫ A

0
|ω′(y1 + t,m)|2 dt a.s. in M.

Now, for all y1 ∈ Q,∫ A

0
|ω′(y1 + t,m)|2 dt =

∫ A

0
|∂mF (τt(τy1m)) dt

≥ essinfm′∈M

∫ A

0
|∂mF (τtm′)|2 dt =: φ′

almost surely in M . Taking the infimum over y1 ∈ Q, we infer that φ ≥ φ′.
On the other hand, by definition of φ′, for all ε > 0, there exists Mε ⊂ M such that

P (Mε) > 0 and

φ′ ≤
∫ A

0
|∂mF (τtm)|2 dt ≤ φ′ + ε ∀m ∈Mε.

Consequently, for all m ∈Mε, we have

inf
y1∈R

∫ A

0
|ω′(y1 + t,m)|2 dt ≤

∫ A

0
|ω′(t,m)|2 dt ≤ φ′ + ε,

that is,
φ ≤ φ′ + ε.

Hence φ = φ′. Eventually, we deduce that in the stationary ergodic case, assumption (2.1) is
equivalent to

∃A > 0, essinfm∈M
∫ A

0
|∂mF (τtm)|2 dt > 0. (2.4)

A straightforward application of the stationary ergodic theorem shows that (2.4) implies that

E[|∂mF |2] > 0.
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However, assumption (2.4) appears to be much more stringent than the latter condition:
indeed, (2.4) is a uniform condition over the probability space M , whereas the convergence

1
R

∫ R

0
|∂mF (τtm)|2 dt −→

R→∞
E[|∂mF |2]

only holds pointwise.
• Let us now compare condition (2.1) with the assumption (H) of [8]. In order to have

a common ground for the comparison, we assume that the setting is stationary ergodic. In
this case, the family of Young measures associated with the sequence ω′(·)/ε can be easily
identified: indeed, according to the results of Bourgeat, Mikelic and Wright (see [7]), for all
G ∈ C1(R) and for all test function ϕ ∈ L1(R×M), there holds∫

R×M
G
(
ω′
(y1

ε
,m
))

ϕ(y1,m) dy1 dµ(m)→
∫

R×M
E[G(∂mF )]ϕ(y1,m) dy1 dµ(m).

By definition of the Young measure, the left-hand side also converges (up to a subsequence)
towards ∫

R×M
〈G, dµy1〉ϕ(y1,m)) dy1 dµ(m).

As a consequence, we obtain

〈G, dµy1〉 = E[G(∂mF )] for a.e. y1 ∈ R.

Hence condition (H) is equivalent (in the stationary ergodic setting) to

E[|∂mF |2] > 0, i.e. F non constant a.s.

We deduce that assumptions (H) and (H’) are equivalent in the periodic and quasi-periodic
settings. In the general stationary ergodic setting, however, condition (2.1) is stronger than
(H). But since we do not know whether (2.4) is a necessary condition for (H’) in the stationary
setting, we cannot really assert that (H’) is stronger than (H).

2.2 Korn-type inequalities: assumption (H”)

We now give a sufficient condition for (H”). Notice that our work in this regard is related to
the paper by Desvillettes and Villani [10], in which the authors prove that for all bounded
domains Ω ⊂ RN which lack an axis of symmetry, there exists a constant K(Ω) > 0 such that

‖D(u)‖L2(Ω) ≥ K(Ω)‖∇u‖L2(Ω)

∀u ∈ H1(Ω)N s.t. u · ν|∂Ω = 0.

The differences with our work are two-fold: first, in our case, the domain R is an unbounded
strip, which prevents us from using Rellich compactness results in order to prove (H”). More-
over, the tangency condition only holds on the lower boundary of R. However, as in [10],
we show that condition (H”) is in fact related to the absence of rotational invariance of
the boundary Γ. Let us stress that this notion is related, although not equivalent, to the
non-degeneracy assumption of the previous paragraph (see (2.1)).

We first define the set of rotational invariant curves:

11



Definition 4. For (y0, R) ∈ R2 × [0,∞), denote by C(y0, R) the circle with center y0 and
radius R.

For all A > 0, we set

RA := {γ ∈W 1,∞([0, A])2, ∃(y0, R) ∈ R2 × (0,∞), γ([0, A]) ⊂ C(y0, R)}
∪{γ ∈W 1,∞([0, A])2, νγ = cst.},

where νγ is a normal vector to the curve γ, namely

νγ =
1

(γ′1
2 + γ′2

2)

(
−γ′2
γ′1

)
.

Notice that RA is a closed set with respect to the weak - ∗ topology in W 1,∞.
We then have the following result:

Lemma 5. Let ω ∈W 1,∞(R). For A > 0, k ∈ Z, let

γAk : y1 ∈ [0, A] 7→ (y1, ω(y1 + kA)).

Assume that there exists A > 0 such that

{γAk , k ∈ Z} ∩ RA = ∅, (2.5)

where the closure is taken with respect to the weak - ∗ topology in W 1,∞. Then (H”) holds.

Assumption (2.5) means that each slice of length A of the boundary remains bounded
away from the set of curves which are invariant by rotation. In particular, in the periodic
case, a simple convexity argument shows that all non-flat boundaries satisfy (2.5) (it suffices
to choose A equal to the period of the function ω).

The proof of Lemma 5 uses the following technical result:

Lemma 6. For all Y > supω, let

RY := {y ∈ R2, ω(y1) < y2 < Y }.

Consider the assertion

(KY ) ∃CY > 0, ∀u ∈ H1(RY ) s.t. u · ν|Γ = 0,
∫
RY

|u(y)|2 dy ≤ CY
∫
RY

|D(u)|2.

If there exists Y0 such that (KY0) is true, then (KY ) is true for all Y > supω.

We postpone the proof of Lemma 6 until the end of the section.
Let us now prove Lemma 5: the idea is to reduce the problem to the study of a Korn-like

inequality in a fixed compact set, and then to use standard techniques similar to the proof of
the Poincaré inequality in a bounded domain.
First step: reduction to a flat strip.

According to Lemma 6, it is sufficient to prove the result in a domain RY for some
Y > supω sufficiently large (notice that the boundary Γ is common to all domains RY ).

We use the extension operator for Lipschitz domains defined by Nitsche in [20]. Since the
result of Nitsche is set in a half-space over a Lipschitz curve, we recall the main ideas of the

12



construction, and show that all arguments remain valid in the case of a strip, provided the
width of the strip is large enough.

We denote by Ω− the lower half-plane below Γ, namely

Ω− := {y ∈ R2, y2 < ω(y1)}.

According to the results of Stein (see [22]), there exists a “generalized distance” δ ∈
C∞(Ω−) such that

0 < 2(ω(y1)− y2) ≤ δ(y) ≤ C0(ω(y1)− y2) ∀y ∈ Ω−,

|∂αy δ(y)| ≤ Cαδ(y)1−|α| ∀α ∈ N2 ∀y ∈ Ω−.

(In general, since ω is merely a Lipschitz function, the function d(·,Γ) has very little regularity,
whence the need for a generalized distance.)

Let ψ ∈ C([1, 2]) such that∫ 2

1
ψ(λ) dλ = 1,

∫ 2

1
λψ(λ) dλ = 0.

For u ∈ H1(RY ), define an extension ũ of u in a strip (inf ω − η, Y ) for some η > 0 by

ũ(y) = u(y) if y ∈ RY ,

ũi(y) : =
∫ 2

1
ψ(λ) [ui(yλ) + λ∂iδ(y) u2(yλ)] dλ, if y ∈ Ω−

where yλ := (y1, y2 + λδ(y)),

Choose Y such that
Y > 2C0 supω − (2C0 − 1) inf ω.

Then if η > 0 is sufficiently small, yλ ∈ RY for all y ∈ (inf ω − η, Y ). The function ũ thus
defined does not have any jump across Γ. Moreover, it can be checked that

‖D(ũ)‖L2(R×(inf ω−η,Y )) ≤ C‖D(u)‖L2(R).

Indeed, if y ∈ Ω− and y2 > inf ω − η,

[∂iũj + ∂j ũi] (y) =
∫ 2

1
dλψ(λ)

[
(∂iuj + ∂jui) (yλ) + 2λ2∂iδ(y)∂jδ(y)∂2u2(yλ)

+λ∂iδ(y) (∂2uj + ∂ju2) (yλ)
+λ∂jδ(y) (∂2ui + ∂iu2) (yλ)
+2λ∂2

ijδ(y)u2(yλ)
]
.

Writing u2(yλ) as

u2(yλ) = u2(y1, y2 + δ(y)) +
∫ λ

1
∂2u2(yµ) dµ

and using the condition
∫ 2

1 λψ(λ) dλ = 0 yields

|D(ũ)(y)| ≤ C
∫ 2

1
|D(u)|(yλ) dλ.

13



A careful analysis of the right-hand side then allows to prove that∫
R
dy1

∫ ω(y1)

inf ω−η
dy2|D(ũ)(y)|2 ≤ C

∫
RY

|D(u)|2.

For all additional details, we refer to [20].
Consequently, we have built an extension operator

E : H1(RY ) 7→ H1(R× (inf ω − η, Y ))

such that for all u ∈ H1(RY ),

‖D(u)‖L2(RY ) ≤ ‖D(Eu)‖L2(R×(inf ω−η)) ≤ C‖D(u)‖L2(RY ),

‖u‖L2(RY ) ≤ ‖Eu‖L2(R×(inf ω−η)) ≤ C‖u‖L2(RY ).

Second step: compactification of the problem.
In the rest of the proof, we set Q := R× (inf ω−η, Y ). According to the first step, we now

have to prove the existence of a constant C such that for any function u ∈ H1(Q) satisfying
u · ν|Γ = 0,

‖u‖L2(Q) ≤ C‖D(u)‖L2(Q).

Of course, it is sufficient to prove that there exists a constant CA such that for all k ∈ Z,

‖u‖L2(Qk,A) ≤ CA‖D(u)‖L2(Qk,A) ∀u ∈ H1(Qk,A) s.t. u · ν|ΓAk = 0 (2.6)

where
Qk,A = Q ∩ {y, kA < y1 < (k + 1)A}.

Assume by contradiction that (2.6) is false. Then there exists a sequence of relative
integers (kn)n≥1 and a sequence un ∈ H1(Qkn,A), such that for all n,

‖un‖L2(Qkn,A) ≥ n‖D(un)‖L2(Qkn,A).

In the rest of the proof, we drop all sub- and superscripts A in Qk,A, γAk in order to lighten
the notation.

Let vn := un(·+ (kn, 0))/‖un‖L2 . Then vn ∈ H1(Q0) for all n and

vn · ν|Γkn = 0, ‖vn‖L2(Q0) = 1, ‖D(vn)‖L2(Q0) ≤
1
n
.

According to the standard Korn inequality (see for instance [20]), there exists C > 0 such
that for all v ∈ H1(Q0),

‖∇v‖L2(Q0) ≤ C(‖v‖L2(Q0) + ‖D(v)‖L2(Q0)).

As a consequence, the sequence vn is bounded in H1(Q0). By Rellich compactness, there
exists a subsequence (still denoted by vn) and a limit function v̄ ∈ H1(Q0) such that

vn ⇀ v̄ in w −H1(Q0),

vn → v̄ in L2(Q0).

14



We deduce that D(v̄) = 0 and ‖v̄‖L2 = 1. Hence v̄ is a non-zero solid vector field: there exists
(C, y0) ∈ (R× R2) \ {0} such that

v̄(y) = (Cy + y0)⊥ for a.e. y ∈ Q0.

On the other hand, for all n ∈ N, for almost every y1 ∈ [0, A], we have

vn,1(γkn(y1))γ′kn,2(y1)− vn,2(γkn(y1)) γ′kn,1(y1) = 0. (2.7)

Since the sequence γkn is bounded in W 1,∞, up to the extraction of a further subsequence, γkn
converges weakly - ∗ in W 1,∞ towards a function γ̄. Since γkn,1(y1) = y1 for all n, we deduce
that (γkn − γ̄) · e1 = 0. We then pass to the limit in the identity (2.7) using the following
facts:

• γkn → γ̄ in L∞, and thus∫ A

0
|vn(γkn)− vn(γ̄)|2 ≤ C‖γkn − γ̄‖∞‖∇vn‖2L2 → 0;

• vn(γ̄) is bounded in H1/2((0, A)), and thus

vn(γ̄)→ v̄(γ̄) in L2(0, A).

At the limit, we obtain
(Cγ̄ + y0) · γ̄′ = 0,

i.e.
|Cγ̄ + y0|2 = cst.

We deduce that γ̄ ∈ RA, and thus RA ∩ {γk, k ∈ Z} 6= ∅, which contradicts the assumption
of the lemma. Thus (2.6) holds, which completes the proof.

Remark 7. • We emphasize that condition (2.5) is probably not optimal. Indeed, (2.5)
amounts to requiring that the inequality

‖u‖L2 ≤ C‖D(u)‖L2

holds uniformly in each slice of length A. However, since our proof relies on compactness
results in L2, it seems necessary to work in a fixed compact domain. Of course, if a
more “constructive” proof were at hand (in the spirit of Lemma 3), it is likely that (2.5)
could be weakened.

• We have already pointed out that in the periodic case, conditions (2.5) and (2.1) are
equivalent. In the general case, however, (2.5) is stronger than (2.1). Indeed, (2.1)
merely requires the frontier Γ to be non-flat (uniformly on R), whereas (2.1) requires
that is not invariant by rotation, in addition to being non-flat.

• We have used in the proof the following Korn inequality: since the function ω is Lipschitz
continuous, there exists a constant CK > 0 such that

‖u‖H1(R) ≤ CK(‖u‖L2(R) + ‖D(u)‖L2(R)) ∀u ∈ H1(R).

We refer to [20] (see also [11]) for a proof. The constant CK depends only on the Lips-
chitz constant of ω. The inequality holds without any assumption on the non-degeneracy
of the boundary or on the behaviour of u at the boundary Γ.
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We now prove Lemma 6. Assume that there exists Y0 such that (KY0) holds true. Let us
first prove that (KY ) is true for all Y ∈ (supω, Y0). Let u ∈ H1(RY ) be arbitrary. Using a
construction similar to the one of Nitsche (see [20]), we define an extension u1 ∈ H1(RY1) of
u such that

Y1 = supω + 2(Y − supω),
‖u1‖L2(RY1

) ≤ C1‖u‖L2(RY ), ‖D(u1)‖L2(RY1
) ≤ C1‖D(u)‖L2(RY ).

Iterating this process, we define sequences (Yn)n≥0, (un)n≥0 such that un ∈ H1(RYn) and
un+1 is an extension of un for all n, and

Yn+1 = supω + 2(Yn − supω),
‖un+1‖L2(RYn+1

) ≤ Cn+1‖un‖L2(RYn ), ‖D(un+1)‖L2(RYn+1
) ≤ Cn+1‖D(un)‖L2(RYn ).

It can be easily checked that limn→∞ Yn =∞, and thus there exists n0 > 0 such that Yn0 > Y0.
By construction, un0 ∈ H1(RY0) and there exists a constant C such that

‖un0‖L2(RYn0
) ≤ C‖u‖L2(RY ), ‖D(un0)‖L2(RYn0

) ≤ C‖D(u)‖L2(RY ).

Moreover,
u = un0 on RY .

B From (KY0), we infer that

‖un0‖L2(RY0
) ≤ CY0‖D(un0)‖L2(RY0

),

and thus
‖u‖L2(RY ) ≤ C‖D(u)‖L2(RY ).

Hence (KY ) is satisfied.
Let us now prove that (KY ) is also true for all Y > Y0. Let u ∈ H1(RY ) arbitrary; then

u ∈ H1(RY0), and
‖u‖L2(RY0

) ≤ CY0‖D(u)‖L2(RY0
).

Moreover, according to the classical Korn inequality in the channel RY0 , there exists a constant
CK such that

‖u‖H1(RY0
) ≤ CK

(
‖u‖L2(RY0

) + ‖D(u)‖L2(RY0
)

)
.

Let Σ := R× {Y0}. Then

‖u‖L2(Σ) ≤ C‖u‖H1(RY0
) ≤ C‖D(u)‖L2(RY0

).

Now, for any y ∈ R× (Y0, Y ), let y′ ∈ Σ such that

y′ = y + t(1,−1) for some t ∈ R.

Then

u(y) = u(y′) + t

∫ 1

0
(∂1 − ∂2)u(y + t(1− τ)(1,−1))dτ.

Notice that
(1,−1) · (∂1 − ∂2)u = ∂1u1 + ∂2u2 − (∂1u2 + ∂2u1),
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and thus ∫
R

∫ Y

Y0

|u(y) · (1,−1)|2 dy ≤ C

(
‖u‖2L2(Σ) +

∫
R

∫ Y

Y0

|D(u)|2
)

≤ C‖Du‖2L2(RY ).

Similarly, ∫
R

∫ Y0

Y
|u(y) · (−1,−1)|2 dy ≤ C‖D(u)‖2L2(RY ).

Eventually, we obtain
‖u‖L2(RY ) ≤ C‖Du‖2L2(RY ),

which completes the proof.

3 Estimates for the no-slip condition

In this section, we will prove Theorem 1. In other words, we will establish, for any sequence
λε ∈ [0,+∞], the well-posedness result and the error estimates that were established in [6]
for λε = 0. We will use the same general strategy, based on the work of Ladyzenskaya and
Solonnikov [17]. However, the handling of the slip type conditions will require new arguments,
due to a loss of control on the skew-symmmetric part of the gradient. Moreover, we shall
specify the dependence of the error terms with respect to φ. We shall of course put the stress
on these new arguments.

The starting point of the proof is an approximation scheme by solutions in truncated
channels. Therefore,we introduce the notations

∀ k, l ≥ 0, Uk,l := U ∩ {k < |x1| < l}, Uk := U−k,k,

for any set U of R2. We take as a new unknown

v := uε − ũ0, ũ0 := 1Ω u
0

where u0 is the Poiseuille flow. As a new pressure, we take

q := p + 12φx1.

It formally satisfies

−∆v + ũ0 · ∇v + v · ∇ũ0 + v · ∇v +∇q = 1Rε(−12φ, 0), x ∈ Ωε,

div v = 0, x ∈ Ωε,

v|x2=1 = 0,
∫
σε
v1 = 0,

vτ |Γε = λε(D(v)ν)τ |Γε , v · ν|Γε = 0,

(3.1)

where ν is the inward pointing normal vector on Γε and

vτ = (Id − ν ⊗ ν)v
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denotes the tangential part of v on Γε. The system is supplemented with the following jump
conditions at the interface Σ:

[v]|Σ = 0, [−D(v)e2 + qe2]|Σ = (−6φ, 0).

In order to build and estimate the field v, we consider the approximate problems in Ωε
n

−∆v + ũ0 · ∇v + v · ∇ũ0 + v · ∇v +∇q = 1Rε(12φ, 0), x ∈ Ωε
n,

div v = 0, x ∈ Ωε
n,

v|x1=n = v|x1=−n = v|x2=1 = 0,
vτ |Γεn = λε(D(v)ν)τ |Γεn , v · ν|Γεn = 0,

(3.2)

and
[v]|Σn = 0, [−D(v)e2 + qe2]|Σn = (−6φ, 0).

The proof divides into four steps:

1. We construct a solution vn of the approximate system (3.2).

2. We derive H1
uloc estimates on vn that are uniform in n. This yields compactness of

(vn)n, hence, as n goes to infinity, a solution u of (NSε).

3. We prove uniqueness of this solution u.

4. We deduce from the previous steps the desired O(
√
ε) bound in H1

uloc for u− u0. From
there, using duality arguments, we get the O(ε) bound in L2

uloc.

Step 1. The wellposedness of (3.2) relies on an a priori estimate over Ωε
n. Multiplying

formally by v, we obtain∫
Ωεn

|D(v)|2 + (λε)−1

∫
Γεn

|vτ |2 = −
∫

Ωεn

(
ũ0 ⊗ v + v ⊗ ũ0

)
: D(v)−

∫
Rεn

12φ v1 +
∫

Σεn

6φv1,

where vτ denotes the tangential part of v. As ‖∇u0‖∞ ≤ C φ, we obtain

‖D(v)‖2L2(Ωεn) ≤ C φ
(
‖v‖L2(Ωεn) ‖D(v)‖L2(Ωεn) +

√
n ε ‖v‖L2(Rεn) +

√
n ‖v‖L2(Σεn)

)
. (3.3)

As v is zero at the upper boundary of the channel, Poincaré inequality applies, to provide

‖v‖L2(Ωεn) ≤ C ‖∇v‖L2(Ωεn).

where C depends only on the height of the channel. Let

Ωε
bl := {x, x2 > εω(x1/ε)}

the “rough” half plane, and ṽ ∈ H1(Ωε
bl) the extension of v which is zero outside Ωε

n. We can
apply to ṽ the results of Nitsche [20] on the Korn inequality in a half plane bounded by a
Lipschitz curve: one has

‖∇ṽ‖L2(Ωεbl)
≤ C ‖D(ṽ)‖L2(Ωεbl)
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where the constant C only depends on the Lipschitz constant of the curve. For Ωε
bl, this

Lipschitz constant, and therefore the estimates, are uniform in ε. We insist that this inequal-
ity is homogenenous: it does not involve the L2 norm of ṽ, contrary to the more general
inhomogeneous Korn inequality. Back to v, we get

‖∇v‖L2(Ωεn) ≤ C‖D(v)‖L2(Ωεn).

Hence, denoting for all k ∈ N

Ek := ‖v‖2L2(Ωεk) + ‖∇v‖2L2(Ωεk) + ‖D(v)‖2L2(Ωεk)

the combination of Poincaré and Korn inequalities leads to En ≤ C‖D(v)‖2L2(Ωεn).

Now, by rescaling either the Poincaré inequality when λε = 0, or the inequality in (H’)
when λε 6= 0, we get

‖v‖L2(Rεn) ≤ C ε ‖∇v‖L2(Rεn).

Then, we deduce

‖v‖L2(Σεn) ≤ C
√
ε ‖v‖H1(Rεn) ≤ C ′

√
ε ‖∇v‖L2(Rεn).

Back to the energy estimate (3.3), we end up with

En ≤ C ‖D(v)‖2L2(Ωεn) ≤ C ′ φ
(
‖v‖L2(Ωεn) ‖D(v)‖L2(Ωεn) +

√
n ε ‖∇v‖L2(Rεn)

)
≤ C ′φ

(
En +

√
n ε
√
En

)
≤ C ′φEn +

1
2
En +

C ′2

2
φ2 n ε.

so that, for φ small enough, we have the global estimate

En ≤ C φ2 n ε. (3.4)

Thanks to this estimate, one obtains by classical arguments a variational solution vn ∈
H1(Ωε

n) of (3.2). The uniqueness of this solution (for φ small enough) is deduced from the
same kind of energy estimates, performed on the difference of two solutions. We leave the
details to the reader.

Step 2. The next step in the proof of Theorem 1 is the derivation of uniform H1
uloc bounds

on vn. The idea, which originates in a work of Ladyzenskaya and Solonnikov, is to prove by
induction on k′ = n− k that

Ek ≤ C0 φ
2 (k + 1) ε, C large enough. (3.5)

Once the bound on the Ek’s is proved, we can use it with k = n − 1, so that E1 ≤ C φ2ε.
This gives a control on a unit slice of the channel around x1 = 0. But as will be clear from
the proof of the induction relation, x1 = 0 plays no special role: in other words the same
bound holds for any unit slice of the channel, which gives the uniform H1

uloc bound.

Let us now describe the induction process. First, by (3.4), the induction assumption holds
with k′ = 0. To go from k′ − 1 to k′, that is from k + 1 to k, we shall need the following
inequality:

∀k ≤ n, Ek ≤ C1

(
Ek+1 − Ek + (Ek+1 − Ek)3/2 + φ2 (k + 1) ε

)
. (3.6)
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This inequality at hand, and assuming Ek+1 ≤ C0 φ
2 (k+ 2) ε, one obtains straightforwardly

that Ek ≤ C0 φ
2 (k + 1) ε for all k ≥ C0 − 1 provided C0 is chosen large enough. For

k ≤ C0 − 1, we have merely Ek ≤ C0 φ
2 (bC0c + 1) ε . Hence, up to a new definition of the

constant C0, we obtain inequality (3.5).

An inequality similar to (3.6) has been established by one of the authors in [6], for the
case λε = 0. The discrete variable k is replaced in [6] by a continuous variable η, but the
correspondence from one to another is obvious. We also refer to the original paper [17], and
to the boundary layer analysis in [13], in which similar inequalities are derived.

Relation (3.6) follows from localized energy estimates. We introduce some truncation
function χk = χk(x1), such that χk = 1 over Ωε

k, χk = 0 outside Ωε
k+1, and |χ′k| ≤ 2.

Multiplying by χk v within (3.2) and integrating by parts, we deduce that∫
Ωε
χk|D(v)|2 + (λε)−1

∫
Γε
χk|vτ |2

≤
∫

Ωε
χk(ũ0 ⊗ v + v ⊗ ũ0) : D(v) −

∫
Rε

12φχkv1 +
∫

Σε
6φv1χk

+
∫

Ωε
D(v) : (∇χk ⊗ v) +

∫
Ωε

(ũ0 ⊗ v + v ⊗ ũ0) : (∇χk ⊗ v)

+
∫

Ωε
(v ⊗ v) : (∇χk ⊗ v) +

∫
Ωε
q∇χk · v =

7∑
j=1

Ij .

where ∇χk = (χ′k, 0). The r.h.s. of the inequality has two different parts:

• The first three terms are very similar to those of step 1. They are treated along the
same lines:

3∑
j=1

|Ij | ≤ C φ
(
Ek+1 +

√
(k + 1) ε

√
Ek+1

)
.

• The remaining terms involve derivatives of χk: they are supported in Ωk,k+1. Standard
manipulations yield the bounds:

|I4| + |I5| ≤ C (Ek+1 − Ek), |I6| ≤ C(Ek+1 − Ek)3/2.

• The treatment of the pressure term is a little more tricky. We decompose

Ωε
k,k+1 = Ωε,−

k,k+1 ∪ Ωε,+
k,k+1, Ωε,±

k,k+1 := Ωε
k,k+1 ∩ {±x1 ≥ 0}.

The zero flux condition on v implies that
∫

Ωε,±k,k+1
f(x1)v1 = 0 for any function f depend-

ing only on x1. Thus,

I7 =
∫

Ωεk,k+1

q χ′k v1 = =
∫

Ωε,−k,k+1

(q − q−k )χ′k v1 +
∫

Ωε,+k,k+1

(q − q+
k )χ′kv1,

where q±k is the average of q over Ωε,±
k,k+1. Then, we use the well-known estimate∥∥∥∥q − ∮

O
q

∥∥∥∥
L2(O)

≤ C ‖∆v + f‖H−1(O)
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for the Stokes system
−∆v +∇q = f, div u = 0 in O

where C only depends on the measure of O and the Lipschitz constant of ∂O. We take
here O = Ωε,±

k,k+1 (so that the constant is uniform in k and ε), and

f := −div
(
ũ0 ⊗ v + v ⊗ ũ0 + v ⊗ v

)
+ 1Rε(12φ, 0).

From there, one gets after a few computations

|I7| ≤ C
(
‖q − q−k ‖L2(Ωε,−k,k+1) + ‖q − q+

k ‖L2(Ωε,+k,k+1)

)
‖v‖L2(Ωk,k+1)

≤ C
(
φ
√
ε
√
Ek+1 − Ek + (Ek+1 − Ek) + (Ek+1 − Ek)3/2

)
≤ C

(
φ2 ε + (Ek+1 − Ek) + (Ek+1 − Ek)3/2

)
.

We refer to [6] for more details. By gathering all the inequalitites on the Ij ’s, we obtain for
φ small enough∫

Ωε
χk|D(v)|2 ≤ C

(
Ek+1 − Ek + (Ek+1 − Ek)3/2 + φ2 (k + 1) ε

)
(3.7)

+Cφ
(
Ek + φ

√
(k + 1)ε

√
Ek

)
(3.8)

Now, we have∫
Ωε
χk|D(v)|2 ≥

∫
Ωε
χ2
k|D(v)|2 ≥

∫
Ωε
|D(χkv)|2 −

∫
Ωε
|χ′k|2|v2|

≥
∫

Ωε
|D(χkv)|2 − 4(Ek+1 − Ek).

As χk v is zero outside Ωε
k+1, we can proceed as in Step 1, to get∫

Ωε
|D(χkv)|2 ≥ cEk+1 ≥ cEk + c (Ek+1 − Ek).

Finally, ∫
Ωε
χk|D(v)|2 ≥ C Ek − c (Ek+1 − Ek).

Combining this inequality with (3.7) gives the result provided φ is small enough.

As we have already explained, once inequality (3.6) is proved, one obtains easily a O(
√
ε)

H1
uloc bound on vn. By standard compactness arguments, any accumulation point v of (vn)

is a solution of (3.1). It provides a solution uε of the original system (NSε). Moreover,

‖uε − u0‖H1
uloc(Ω

ε) ≤ C φ
√
ε, ‖uε‖H1

uloc(Ω
ε) ≤ C φ. (3.9)

Step 3. It remains to prove the uniqueness of the solution in H1
uloc.

Let now v = uε,2 − uε,1 the difference between two solutions of (NSε). It satisfies

−∆v + div
(
uε,1 ⊗ v + v ⊗ uε,1 + v ⊗ v

)
+∇q = 0
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together with div v = 0 and homogeneous jump and boundary conditions. We can always
assume that uε,1 satisfies the bounds in (3.9). Then, performing energy estimates similar to
those of Step 2, we get, for φ small enough:

∀k, Ek ≤ C
(

(Ek+1 − Ek) + (Ek+1 − Ek)3/2 + φ
√
εEk

)
We have used implicitly that∣∣∣∣∫

Ωε
χku

ε,1 ⊗ v : ∇(v)
∣∣∣∣ ≤ k∑

j=0

∫
Ωεj,j+1

|uε,1| |v| |∇(v)|

≤
k∑
j=0

‖uε,1‖L4(Ωεj,j+1) ‖v‖L4(Ωεj,j+1)‖∇v‖L2(Ωεj,j+1)

≤ ‖uε,1‖H1
uloc

k∑
j=0

‖v‖2H1(Ωεj,j+1) ≤ Cφ
√
εEk+1.

As v belongs to H1
uloc, Ek+1 − Ek is bounded uniformly in k: eventually, for φ

√
ε small

enough, we get Ek ≤ C for all k, which means that v is of finite energy. The fact that v = 0
then follows from a classical global energy estimate, performed on the whole channel Ωε. This
concludes the proof.

Step 4. Note that, by the previous steps, we have established not only the well-posedness,
but the H1

uloc estimate
‖uε − u0‖H1

uloc(Ω) ≤ C φ
√
ε.

From there, one obtains that

‖uε − u0‖L2
uloc(Σ) ≤ C φε.

The L2
uloc(Ω) estimate follows from estimates on a linear problem in the channel Ω:

−∆v +∇q + u0 · ∇v + v · ∇u0 = div F ε,
div v = 0,
v|Σ = ϕε,

where v = uε−u0, ϕε = v|Σ = O(φε) in L2
uloc and F ε = v⊗ v = O(φε) in L2

uloc thanks to
the H1

uloc bound. By a duality argument, one can then prove that ‖v‖L2
uloc(Ω) is also O(φ ε) in

L2
uloc. This duality argument is explained in the paper [6, section 3.2]: as the slip condition

in the boundary condition at ∂Ωε plays no role, we skip the proof.

4 Boundary layer analysis

In order to improve our description of uε, we must analyze the behaviour of the fluid in the
boundary layer. The starting point of this analysis is a formal expansion: we anticipate that,
near the rough boundary, we have

uε(x) = u0(x) + 6φ εv(x/ε)
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where u0 is the Poiseuille flow, and v = v(y) is a boundary layer corrector, due to the fact that
u0 does not satisfy either the Dirichlet boundary condition when λ = 0, or the slip boundary
condition when λ 6= 0. We shall focus on the latter case, which is the new one. Classically, the
rescaled variable y belongs to the bumped half plane Ωbl := {y, y2 > ω(y1)}, and by plugging
the expansion in (NSε), one finds that

−∆v +∇p = 0, y ∈ Ωbl,

div v = 0, y ∈ Ωbl,

(D(v)ν)τ = −(D((y2, 0))ν)τ , y ∈ ∂Ωbl,

v · ν = −(y2, 0) · ν, y ∈ ∂Ωbl.

(BL)

where
ν = ν(y) :=

1√
1 + γ′2(y1)

(−ω′(y1), 1)

is a unit normal vector. The inhomogeneous boundary terms come from the Poiseuille flow
(x2(1− x2) ≈ εy2 near the boundary).

System (BL) is different from the boundary layer system met in the former studies on wall
laws: it has inhomogeneous Navier boundary conditions, instead of Dirichlet ones. Neverthe-
less, we are able to obtain similar results, as regards well-posedness and qualitative issues.

4.1 Well-posedness of the boundary layer

First, we have the following well-posedness result:

Theorem 8. System (BL) has a unique solution v ∈ H1
loc(Ωbl) satisfying:

sup
k

∫
Ωblk,k+1

|∇v|2 < +∞ where for all k, l, Ωbl
k,l := Ωbl ∩ {k < y1 < l}.

The proof follows closely the lines of [13], where the case of an inhomogenenous Dirichlet
condition (instead of Navier) was considered. The main difficulty comes from the unbound-
edness of the domain, which prevents from using the Poincaré inequality or assumptions like
(H’) or (H”). To overcome this difficulty, there are two main steps:

1. One replaces system (BL) by an equivalent system, set in the channel

Ωbl,− := Ωbl ∩ {y2 < 0}.

This equivalent system involves a nonlocal boundary condition at y2 = 0, with a
Dirichlet-to-Neumann type operator.

2. Once brought back to the channel Ωbl,−, one can follow the same general strategy as in
the previous section, based on the truncated energies

Ek := ‖v‖2
L2(Ωbl,−k )

+ ‖∇v‖2
L2(Ωbl,−k )

+ ‖D(v)‖2
L2(Ωbl,−k )

.
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Let us give a few hints on these two steps.

Step 1. It relies on the notion of transparent boundary conditions in numerical analysis.
The formal idea is the following: the solution v of (BL) satisfies the boundary value problem

−∆v +∇q = 0, y2 > 0,
∇ · v = 0, y2 > 0,
v|y2=0 = v0,

(4.1)

where v0 = v|y2=0. Using the Poisson kernel for the Stokes problem in a half-plane, we have
the representation formula:

v(y) =
∫

R
G(t, y2)v0(y1 − t) dt, q(y) =

∫
R
∇g(t, y2) · v0(y1 − t) dt (4.2)

where G(y) =
2y2

π(y2
1 + y2

2)2

(
y21 y1 y2
y1 y2 y22

)
, g(y) = − 2y2

π(y2
1 + y2

2)
.

Thanks to this representation formula, we can express the stress

(2D(v)ν − qν)|y2=0 = −2∂2v + (∂2v1 − ∂1v2)e1 + qe2

in terms of v at y2 = 0. Formally, this leads to some relation

(−2D(v)e2 + q e2)|{y2=0} = DN(v|{y2=0})

for some Dirichlet-to-Neumann type operator DN . Hence, and still at a formal level, we can
replace the system (BL) by the following system in Ωbl,−:

−∆v +∇q = 0, y ∈ Ωbl,−,

∇ · v = 0, y ∈ Ωbl,−,

(D(v)ν)τ = −(D((y2, 0))ν)τ , y ∈ ∂Ωbl,−,

v · ν = −(y2, 0) · ν, y ∈ ∂Ωbl,−,

(−2D(v)e2 + q e2)|{y2=0} =DN(v|{y2=0}).

(4.3)

A rigorous version of these formal arguments is contained in the next proposition

Proposition 9. (Equivalent formulation of (BL))

i) (Stokes problem in a half-plane)

For all v0 ∈ H1/2
uloc(R) there exists a unique solution v ∈ H1

loc(R2
+) of (4.1) satisfying

sup
k∈Z

∫ k+1

k

∫ +∞

0
|∇v|2 dy2dy1 < +∞. (4.4)

ii) (Dirichlet-to-Neumann operator)

There is a unique operator

DN : H1/2
uloc(R) 7→ D′(R)
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that satisfies, for all v0 ∈ H1/2
uloc(R), and all ϕ ∈ C∞c (R2

+) with ∇ · ϕ = 0,

2
∫

R2
+

D(v) ·D(ϕ) =< DN(v0), ϕ|{y2=0} > . (4.5)

where v is the solution of (4.1). Moreover, for all v0 ∈ H1/2
uloc(R), the operator DN(v0)

can be extended to a continuous linear form over the space H1/2
c (R) of H1/2 functions

with compact support.

iii) (Transparent boundary condition)

Let (v, q) be a solution of (BL) in H1
loc(Ωbl) with supk

∫
Ωblk,k+1

|∇v|2 < +∞. Then, it

satisfies (4.3).

Conversely, let v− in H1
uloc(Ω

bl,−) be a solution of (4.3). Then, the field v defined by

v := v− in Ωbl,−, v :=
∫

R
G(y1 − t, y2) v−(t, 0) dt for y2 > 0

is a solution of (BL) in H1
loc(Ωbl) such that supk

∫
Ωblk,k+1

|∇v|2 < +∞.

Proof of the proposition. The proof of the proposition is almost contained in [13]. The
only difference lies in the definition of the Dirichlet-to-Neumann operator. In [13], the full
gradient is used in the definition of DN , instead of its symmetric part. Here, in order to adapt
to the Navier condition at the rough boundary, D(u)ν substitutes to ∂νu, and, subsequently,
(4.5) substitutes to the relation∫

R2
+

∇v · ∇ϕ =< DN(v0), ϕ|{y2=0} > .

used in [13]. As these minor changes do not play any serious role, we skip the proof.

Step 2. By the previous proposition, in order to prove well-posedness of the boundary
layer system, we can work with the equivalent system (4.3). As it is set in a bounded channel,
it is amenable to the kind of the analysis performed in the previous section, for the study
of the no-slip condition. The keypoint is again to have an induction relation between the
truncated energies. However, the nonlocal DN operator prevents us from deriving a local
relation like (3.6). We are able to show the following more complicated relation: there exists
η > 0 such that, for any m > 1,

Ek ≤ C1

(
k + 1 +

1
mη

sup
j≥k+m

(Ej+1 − Ej) + m sup
k+m≥j≥k

(Ej+1 − Ej)

)
. (4.6)

The same relation was established in [13], for the boundary layer system with a Dirichlet
condition. The proof starts with the the change of unknowns u := v + (y2, 0), p := q, that
turns (4.3) into 

−∆u+∇p = 0, y ∈ Ωbl,−,

∇ · u = 0, y ∈ Ωbl,−,

(D(u)ν)τ = 0, y ∈ ∂Ωbl,

u · ν = 0, y ∈ ∂Ωbl,

(−2D(u)e2 + q e2)|{y2=0} =DN(u|{y2=0})− (1, 0).
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Afterwards, energy estimates are performed, testing against χku. The only change with
respect to [13] due the Navier condition is the treatment of the lower order terms. When a
Dirichlet condition holds at the boundary, one can rely on the Poincaré inequality, to obtain

Ek ≤ C

(∫
Ωbl,−k,k+1

|∇u|2 + Ek+1 − Ek

)

and then to control Ek from the energy estimate (which gives a bound on the gradient only).
This is no longer possible in the case of the Navier condition. Moreover, we cannot proceed as
in the previous section, using the Dirichlet condition at the upper boundary of the channel.
Indeed, in our boundary layer context, a non-local condition holds at the upper boundary.
This is where the assumption (H”) is needed: it easily implies that

Ek ≤ C

(∫
Ωbl,−k,k+1

|D(u)|2 + Ek+1 − Ek

)

and can therefore be controlled from the energy estimate (which gives a bound on the sym-
metric part of the gradient only). From there, all computations and arguments are similar to
those of [13]. We refer to this paper for all necessary details.

4.2 Qualitative behaviour at infinity

As the solution of (BL) is now at hand, we still need to show its convergence to a constant field
as y2 goes to infinity. Here, some ergodicity property condition must be added. We consider
the stationary random setting: we take ω to be an ergodic stationary random process (on a
probability space (M,µ)), obeying the assumptions of Theorem 2. We then state the following
proposition:

Proposition 10. There exists α ∈ R such that the solution v of (BL) satisfies

v(y)→ (α, 0), as y2 → +∞,

locally uniformly in y1, almost surely and in Lp(M) for all finite p.

This proposition is based on the integral representation (4.2), and the ergodic theorem.
It has been proved in [6] (the condition at the rough boundary does not play any role).

Remark 11. It is possible to derive upper and lower bounds for the “slip length” α. Such
bounds were established by Achdou et al. [2] in the periodic setting. They are still valid in the
random stationary case. Along the lines of [3], one can prove: for ω ∈ C2(R) ∩W 2,∞(R),

−Ymax ≤ α ≤ −Ymin, Ymin := inf
R
ω, Ymax := sup

R
ω.

In order not to burden the paper, we skip the proof.
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5 Estimates for the Navier condition

This section is devoted to the proof of Theorem 2. The main novelty lies in the derivation
of almost sure estimates. Indeed, to our knowledge, the previous convergence results dealing
with a stationary ergodic setting were all stated in a norm involving an expectation (see
[6, 12]). The main steps of the proof are the same as in [13, 6]: the idea is to build an
approximate solution which consists of the main term u0, the boundary layer corrector v, and
two additional correctors u1 and rε. We will review briefly the definition and well-posedness
of u1 and rε, and focus on the estimates which are required for the proof of Theorem 2.
• We start with some regularity estimates for the function v which solves the boundary

layer problem (BL):

Lemma 12. Let β ∈ N2 be arbitrary, and let v be the solution of (BL). Then for all a > 0,
there exists a constant C, depending only on the Lipschitz constant of ω, on β and on a, such
that

sup
k∈Z

∫ k+1

k

∫ ∞
a

∣∣∣∇β∇v∣∣∣2 ≤ C.
In particular, v ∈ L∞(R× (a,∞)) for all a > 0..

Proof. The arguments are the same as in [13, Proposition 6]. According to Proposition 9,
∇v ∈ L2

uloc(Ω
bl), and v0 = v|Σ ∈ L2

uloc(R). Since v is given by the representation formula (4.2)
in the upper-half plane, by differentiating under the integral sign in (4.2), we obtain∫ k+1

k

∫ ∞
a

∣∣∣∇β∇v∣∣∣2 ≤
∫ k+1

k

∫ ∞
a

∣∣∣∣∫
R

∣∣∣∇β∇vG(t, y2)
∣∣∣ |v0(y1 − t)| dt

∣∣∣∣2 dy1dy2

≤ Cβ

∫ k+1

k

∫ ∞
a

∣∣∣∣∫
R

1
t2 + y2

2

|v0(y1 − t)| dt
∣∣∣∣2 dy1dy2

≤ Cβ

∫ ∞
a

(∫
R

dt

t2 + y2
2

)∫ k+1

k

∫
R

|v0(y1 − t)|2

t2 + y2
2

dt dy1 dy2

≤ Cβ‖v0‖L2
uloc(R)

∫ ∞
a

∫
R

1
y2

1
t2 + y2

2

dt dy2 ≤ Cβ,a‖v0‖L2
uloc(R).

• We now prove the following result, which is crucial with regards to the derivation of
almost sure estimates, and which is the main novelty of this section:

Proposition 13. Let v be the solution of the boundary layer system (BL). Then the following
estimates hold almost surely as ε→ 0:

sup
R≥1

1
R1/2

‖v(·/ε)− (α, 0)‖L2(ΩR) = o(1),

sup
R≥1

1
R1/2

(∥∥∥∥∫ x1

0
v2

(
x′1
ε
,
1
ε

)
dx′1

∥∥∥∥
H3(−R,R)

+
∥∥∥∥v1

(
x1

ε
,
1
ε

)
− α

∥∥∥∥
H3(−R,R)

)
= o(1).
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Remark 14. This result combines two main ingredients: the deterministic construction of
the preceding section, which eventually led to Lemma 12, and the almost sure convergence
of the corrector v in the stationary ergodic setting (see Proposition 10). We emphasize that
both items are important here. In particular, it does not seem possible to prove almost sure
estimates by using a probabilistic construction of the boundary layer as in [6].

Proof. We use an idea developed by Souganidis (see [21]). Let δ > 0 be arbitrary. Then,
according to Egorov’s Theorem, there exists a measurable set Mδ ⊂M and a number yδ > 0
such that

|v(0, y2,m)− (α, 0)| ≤ δ ∀m ∈Mδ, ∀y2 > yδ,

P (M c
δ ) ≤ δ.

Without loss of generality, we assume that yδ ≥ 1.
Now, according to Birkhoff’s ergodic Theorem, for almost every m there exists kδ > 0

such that if k > kδ,

Aδ = Aδ(m) := {y1 ∈ R, τy1m ∈Mδ} satisfies: |Aδ ∩ (−k, k)| ≥ 2k(1− 2δ).

For all R ≥ 1, ε > 0, we have

R−1 ‖v(·/ε)− (α, 0)‖2L2(ΩR) =
ε2

R

∫ R/ε

−R/ε

∫ 1/ε

ω(y1)
|v(y,m)− (α, 0)|2 dy

=
ε2

R

∫ R/ε

−R/ε

∫ 1/ε

ω(y1)
|v(0, y2, τy1m)− (α, 0)|2 dy

=
ε2

R

∫ R/ε

−R/ε

∫ yδ

ω(y1)
|v(0, y2, τy1m)− (α, 0)|2 dy

+
ε2

R

∫ R/ε

−R/ε

∫ 1/ε

yδ

1τy1m∈Mδ
|v(0, y2, τy1m)− (α, 0)|2 dy

+
ε2

R

∫ R/ε

−R/ε

∫ 1/ε

yδ

1τy1m∈Mc
δ
|v(0, y2, τy1m)− (α, 0)|2 dy

=
3∑
j=1

Ij

We have clearly, by definition of Aδ,

I1 ≤ ε sup
R′≥1

1
R′
‖v(y)− (α, 0)‖2L2(((−R′,R′)×(−1,yδ))∩Ωbl) ≤ Cδε,

I2 ≤
ε2

R

2R
ε

1
ε
δ2 ≤ 2δ2.

Notice that the constant Cδ in the first inequality depends on the random parameter m.
As for the third integral, recall that v ∈ L∞(R× (1,∞)) according to Lemma 12 and that

yδ ≥ 1. Thus we have, for all R ≥ 1 and if ε < 1/kδ,

I3 ≤ 4δ
(
|α|2 + ‖v‖2L∞(R×(1,∞))

)
.

Gathering the three terms, we deduce that the first estimate of the Lemma holds true.
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Concerning the second estimate, we define the vector field u(y) = v(y) + (y2, 0). Notice
that u is divergence free and that u · ν = 0 at the lower boundary of Ωbl. Consequently,
following [6], Proposition 14, we write∫ x1

0
v2

(
x′1
ε
,
1
ε

)
dx′1 = ε

∫ x1/ε

0
u2

(
y1,

1
ε

)
dy1

= ε

∫ 1/ε

ω(x1/ε)
u1

(x1

ε
, y2

)
dy2 − ε

∫ 1/ε

ω(0)
u1 (0, y2) dy2

= ε

∫ 1/ε

ω(x1/ε)
(v1 − α)

(x1

ε
, y2

)
dy2 − ε

∫ 1/ε

ω(0)
(v1 − α) (0, y2) dy2(5.1)

− ε

[
ω2
(
x1
ε

)
− ω2(0)

2
+ α

(
ω
(x1

ε

)
− ω(0)

)]
.

The last term is bounded in L∞ by ε(‖ω‖2∞ + 2‖ω‖∞), and thus converges towards zero in
the appropriate norm. As for the other two terms, set

U ε(y1) := ε

∫ 1/ε

ω(y1)
(v1 − α)(y1, y2)dy2.

Using the same decomposition as previously, we write, for δ > 0 arbitrary,

U ε(y1) = ε

∫ yδ

ω(y1)
(v1 − α) + ε1τy1ω∈Aδ

∫ 1/ε

yδ

(v1 − α) + ε1τy1ω∈Acδ

∫ 1/ε

yδ

(v1 − α),

and thus
|U ε(y1)| ≤ ε

∫ yδ

ω(y1)
|v1 − α|+ δ + ‖v1 − α‖L∞(R×(1,∞))1τy1ω∈Acδ .

Consequently, we obtain, for all R ≥ 1 and for ε small enough (depending on δ),

1
R

∫ R

−R

∣∣∣U ε (x1

ε

)∣∣∣2 dx1 ≤ C
ε3

R
(yδ − inf ω)

∫ R/ε

−R/ε

∫ yδ

ω(y1)
|v1 − α|2

+C
(
δ2 + 4δ‖v1 − α‖2L∞(R×(1,∞))

)
≤ Cδε

2 + Cδ.

Hence, as ε vanishes,

sup
R≥1

1
R

∫ R

−R

∣∣∣U ε (x1

ε

)∣∣∣2 dx1 = o(1).

The second term in (5.1) is easily treated: since it does not depend on x1, we have

sup
R≥1

1
R

∫ R

−R

∣∣∣∣∣
∫ 1/ε

ω(0)
(v1 − α) (0, y2) dy2

∣∣∣∣∣
2

dx1

=

∣∣∣∣∣
∫ 1/ε

ω(0)
(v1 − α) (0, y2) dy2

∣∣∣∣∣
2

.
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Since (v1 − α)(0, y2) vanishes almost surely as y2 →∞, we infer that

lim
ε→0

ε

∫ 1/ε

ω(0)
(v1 − α) (0, y2) dy2 = 0 a.s.

This proves that

sup
R≥1

1
R1/2

∥∥∥∥∫ x1

0
v2

(
x′1
ε
,
1
ε

)
dx′1

∥∥∥∥
L2(−R,R)

= o(1)

as ε vanishes.
The estimates

sup
R≥1

1
R1/2

∥∥∥∥v2

(
x1

ε
,
1
ε

)∥∥∥∥
L2(−R,R)

= o(1),

sup
R≥1

1
R1/2

∥∥∥∥v1

(
x1

ε
,
1
ε

)
− α

∥∥∥∥
L2(−R,R)

= o(1)

are derived in a similar fashion. There remains to prove that for 1 ≤ k ≤ 3

sup
R≥1

1
R1/2

ε−k
∥∥∥∥(∂ky1v)

(
x1

ε
,
1
ε

)∥∥∥∥
L2(−R,R)

= o(1).

Notice that it suffices to prove that for k = 1, 2, 3,

lim
y2→∞

yk2∂
k
y1v(0, y2,m) = 0 almost surely for m ∈M. (5.2)

Then the same arguments as above allow us to conclude.
In order to obtain (5.2), we use the same estimates as in [6], Proposition 13. We write

∂ky1v(0, y2,m) =
∫

R
y′1∂

k+1
y1 G(−y′1, y2)

(
1
y′1

∫ y′1

0
(v0(−z,m)− (α, 0))dz

)
dy′1.

Since G is homogeneous of degree −1, it can be easily proved that for k ≥ 1,∣∣∣∂ky1G(y1, y2)
∣∣∣ ≤ Ck(y2

1 + y2
2)−

k+1
2 ,∣∣∣y1∂

k+1
y1 G(y1, y2)

∣∣∣ ≤ Ck(y2
1 + y2

2)−
k+1
2 .

Now, let δ > 0 be arbitrary. Almost surely, there exists yδ > 0 (depending on m) such that∣∣∣∣ 1
y1

∫ y1

0
(v0(z,m)− (α, 0))dz

∣∣∣∣ ≤ δ if |y1| ≥ yδ.

As a consequence,∣∣∣∣∣
∫
|y′1|≥yδ

y′1∂
k+1
y1 G(−y′1, y2)

(
1
y′1

∫ y′1

0
(v0(−z, ω)− (α, 0))dz

)
dy′1

∣∣∣∣∣
≤ Ckδ

∫
|y1|≥yδ

(y2
1 + y2

2)−
k+1
2 dy1

≤ Ck
δ

yk2
.
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On the other hand,∣∣∣∣∣
∫
|y′1|≤yδ

y′1∂
k+1
y1 G(−y′1, y2)

(
1
y′1

∫ y′1

0
(v0(−z,m)− (α, 0))dz

)
dy′1

∣∣∣∣∣
≤ Ck

∫ yδ

0
|(v0(−z,m)− (α, 0))| dz

∫
|y1|≤yδ

(y2
1 + y2

2)−
k+2
2 dy1

≤ Cδ
1

yk+1
2

.

Gathering the two terms, we infer that for all δ > 0, there exists Cδ > 0 such that∣∣∣yk2∂ky1v(0, y2,m)
∣∣∣ ≤ δ +

Cδ
y2

∀y2 > 0,

and thus the quantity in the left-hand side vanishes almost surely as y2 →∞.

• We are now ready to prove the convergence result stated in Theorem 2. Following [13],
we set

uεapp(x) := u0(x) + 6φεv
(x
ε

)
+ εu1(x) + εrε(x) + 6φε2v1

(x
ε

)
,

where the correctors u1 and rε ensure that uεapp satisfies the Dirichlet boundary condition at
the upper boundary and the zero flux condition. The term v1 is a boundary layer term which
compensates the tangential trace of u0 + 6φεv at the rough boundary1. Additionnally, u1 is
intended to be O(1) while rε = o(1).

B We choose u1 to be the solution of
−∆u1 + u0 · ∇u1 + u1 · ∇u0 +∇p1 = 0, x ∈ Ω,
∇ · u1 = 0, x ∈ Ω,
u1
|x2=0 = 0, u1

|x2=1 = (−6φα, 0),∫
σ u

1
1 = −6φα.

Notice that we assume that u1 satisfies a no-slip condition at the lower boundary. This stems
from the non-degeneracy of the frontier Γε: in order that the non-penetration condition is
satisfied at order ε, u1 must vanish at x2 = 0. We recall that the same argument led to the
no-slip condition for u0 at x2 = 0.

Hence the vector field u1 is exactly the same as in [13] and is a combination of Couette
and Poiseuille flows:

u1
1(x) = 6φ(−4αx2 + 3αx2

2), u1
2(x) = 0, x ∈ Ω

and we extend u1 by zero outside Ω.
B The additional boundary term v1 solves the system

−∆v1 +∇q1 = 0 in Ωbl

v1 · ν = (y2
2, 0) · ν on Γ,

λ0(D(v1)ν)τ = (v + (y2, 0))τ + λ0(D((y2
2, 0))ν)τ on Γ,

1It can be checked that this extra boundary layer term is needed only when the original slip length λε is
such that λ . 1.
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under the condition
sup
k∈Z

∫
Ωblk,k+1

|∇v1|2.

Using the same techniques as in Section 5, energy estimates in H1
uloc(Ω

bl
−) for v1 can be proved,

leading to existence and uniqueness of v1. Additionally, there exists β ∈ R such that

lim
y2→∞

v1(y1, y2) = (β, 0)

almost surely.
B As for rε, we use the following Lemma:

Lemma 15. There exists a vector field rε ∈ H2
loc(Ω) satisfying

∇ · rε = 0,
rε|x2=0 = 0, rε|x2=1 = 6φ

[
(α, 0)− v

(
x1
ε ,

1
ε

)
− εv1

(
x1
ε ,

1
ε

)]
,∫

σ r
ε
1 = −

∫
σε\σ u

0
1 − 6φ

∫
σε

(v1 + εv1
1)(x/ε) + 6φα,

and such that
sup
R≥1

1
R1/2

‖rε‖H2(Ω−R,R) = o(1) and ‖rε‖W 2,∞(Ω) = O(1).

The Lemma follows directly from Proposition 13 and the construction in Proposition 5.1
in [6]. Once again, we extend rε by zero outside Ω.

By construction, the function uεapp satisfies
−∆uεapp + uεapp · ∇uεapp +∇pεapp = div Gε + f ε in Ωε \ Σ,
uεapp|x2=1 = 0,
uεapp · ν|Γε = 0,
(uεapp)τ |Γε = λ0(D(uεapp)ν)τ |Γε + gε,

[uεapp]|Σ = 0,
[
D(uεapp)e2 − pεe2

]
|Σ = D(εrε + εu1)e2|Σ =: ϕε

where

Gε = εu0 ⊗
(

6φ
(
v
( ·
ε

)
− (α, 0) + εv1

( ·
ε

))
+ rε

)
+ ε

(
6φ
(
v
( ·
ε

)
− (α, 0) + εv1

( ·
ε

))
+ rε

)
⊗ u0

+ ε2
(

6φ
(
v
( ·
ε

)
+ εv1

( ·
ε

))
+ rε

)
⊗
(

6φ
(
v
( ·
ε

)
+ εv1

( ·
ε

))
+ rε

)
and

f ε = −ε∆rε, gε = 6φ(ε2v1(x/ε)− (x2
2, 0))τ |Γε .

According to the estimates of Section 4, Proposition 13 and Lemma 15, we have

sup
R≥1

1
R1/2

‖Gε‖L2(ΩεR) = o(ε),

sup
R≥1

1
R1/2

‖f ε‖L2(ΩεR) = o(ε),

sup
R≥1

1
R1/2

‖ϕε‖L2(ΣR) = o(ε) +O(εφ),

sup
k∈Z
‖gε‖L2(Γεk,k+1) = O(ε2).
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Consequently, setting wε = uε − uεapp, we obtain

−∆wε + (uε · ∇)wε + (wε · ∇)uεapp +∇qε = −div Gε − f ε inΩε \ Σ, (5.3)

and wε satisfies the same boundary and jump conditions as uεapp.
The next step is to derive energy estimates for the above system. The proof goes along

the same lines as the one in Section 3, and therefore, we skip the details. The main steps are
the following:

1. First, we derive an energy estimate in Ωε
n for a sequence (wεn)n∈N satisfying (5.3) in Ωε

n

with homogeneous Dirichlet boundary conditions at x1 = ±n; more precisely, we prove
that for φ small enough,∫

Ωεn

(|D(wεn)|2 + |wεn|2 + |∇wεn|2) = no(ε2).

2. By induction on k, we prove that for all n ≥ 1, k ∈ {1, · · · , n− 1},∫
Ωεk

(|D(wεn)|2 + |wεn|2 + |∇wεn|2) = ko(ε2).

3. Passing to the limit as n→∞, we deduce that for all k ≥ 1,∫
Ωεk

(|D(wε)|2 + |wε|2 + |∇wε|2) = ko(ε2).

There are two main differences with the estimates of Section 3. The first one lies in terms
of the type ∫

Ωεk

∣∣((wεn · ∇)uεapp

)
· wεn

∣∣ ;
indeed, because of the boundary layer term v, ∇uεapp does not belong to L∞(Ωε) in general.
Therefore, using Sobolev embeddings, we have∫

Ωεk

|wεn|(x)2
∣∣∣∇v (x

ε

)∣∣∣ dx =
k−1∑
j=−k

∫
Ωεj,j+1

|wεn(x)|2
∣∣∣∇v (x

ε

)∣∣∣ dx
≤ ε

k−1∑
j=−k

(∫
Ωεj,j+1

|wεn|4
)1/2(∫ j+1

ε

j
ε

∫ 1/ε

ω(y1)
|∇v(y)|2 dy

)1/2

≤ C
√
ε‖∇v‖H1

uloc(Ω
bl)‖wεn‖2H1(Ωεk) ≤ C

√
εφ‖wεn‖2H1(Ωεk).

The second difference comes from the boundary term gε, namely

1
λ0

∫
Γεn

χk(wεn)τgε ≤
1

2λ0

∫
Γεn

χk|(wεn)τ |2 + C(k + 1)
ε4

λ0
.

The first term of the right-hand side can be absorbed in the boundary term coming from the
integration by parts of

∫
∆wεn ·wεn. The second one is clearly o((k+ 1)ε2). Notice that this is

the reason why we need the additional boundary layer term v1: if we merely take

uεapp = u0 + εv
(x
ε

)
+ εu1(x) + εrε(x)
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then gε = O(ε), and the second term in the right-hand side of the preceding inequality is
O((k + 1)ε2/λ0).

The inequality relating Ek and Ek+1 (with the same notation as in Section 3) becomes in
the present case

Ek ≤ C
(
Ek+1 − Ek +

√
εφEk+1 + εη(ε)

√
k + 1

√
Ek+1 + (k + 1)ε4

)
+ C(φ+ εη(ε)

√
k + 1)(Ek=1 − Ek)3/2,

for some function η such that lim0+ η = 0. By induction we infer easily that

Ek ≤ kε2η1(ε),

for some other function η1 vanishing at zero, which completes the second step described above.
The two other steps are left to the reader.

We infer that

sup
R≥1

1
R1/2

∥∥uε − uεapp

∥∥
H1(ΩεR)

= o(ε) almost surely.

On the other hand, let uN be the solution of (NS)-(Na) with λ = 6φαε. Then the function
uN is explicit: as in [13], we have

uN = (6φUN (x2), 0) with UN (x2) = − 1 + εα

1 + 4εα
x2

2 +
1

1 + 4εα
x2 +

εα

1 + 4εα
,

so that
uN = u0 + 6φε(α, 0) + εu1 +O(ε2) in L2

uloc(Ω).

From there, we obtain

sup
R≥1

1
R1/2

∥∥uN − uεapp

∥∥
L2(ΩεR)

= o(ε) almost surely.

Theorem 2 follows.
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