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Abstract

We present a quantitative analysis of the effect of rough hydrophobic surfaces on
viscous newtonian flows. We use a model introduced by Ybert and coauthors in [19], in
which the rough surface is replaced by a flat plane with alternating small areas of slip
and no-slip. We investigate the averaged slip generated at the boundary, depending on
the ratio between these areas. This problem reduces to the homogenization of a non-local
system, involving the Dirichlet to Neumann map of the Stokes operator, in a domain
with small holes. Pondering on the works [2, 3], we compute accurate scaling laws of the
averaged slip for various types of roughness (riblets, patches). Numerical computations
complete and confirm the analysis.

1 Introduction

With the development of microfluidics, drag reduction for low Reynolds number flows, notably
at solid walls, has become a stimulating issue. Therefore, the interaction between a fluid and
a solid boundary has been investigated thoroughly, both at the experimental and theoretical
levels. A special attention has been paid to the detection of slip, for various types of flows
and solid walls. We refer to [15] for a review.

As a result of this activity, the idea that rough boundaries could generate a substantial slip
has spread out. This idea has developped on the basis of both experimental and theoretical
works, notably on wall laws. We remind that in the context of roughness effects, a wall law
is an effective boundary condition imposed at a smoothened boundary, reflecting the overall
impact of the real rough boundary. In particular, if one describes the rough boundary through
an oscillation of small amplitude and wavelength ε, one can show rigorously that a no-slip
condition at the rough boundary can be replaced by a wall law of Navier type, with slip length
of order ε. We refer for instance to [1, 13, 6] for more precise statements.

However, these seemingly favorable results must be considered with care. For instance, at
the experimental level, one must ensure that the slip is not measured too far away from the
boundary. Also, as regards the theoretical works on wall laws, the position of the artificial
boundary at which the law is prescribed is crucial. Indeed, when the artificial boundary is
moved upwards by a height h = O(ε), the effective slip is also increased by h. Let us emphasize
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that all forementioned works consider artifical boundaries that are at the top of the roughness.
As a result, the flow rate in the smoothened domain does not equal the averaged flow rate
in the rough domain, making comparisons inaccurate. In fact, in the case of rough wetting
surfaces (endowed with a no-slip condition), one can even show the following: if one puts
the artificial boundary in a way that the flow rates are the same, then the flat boundary is
optimal with respect to drag minimization. We refer to [7] for detailed statements and proofs.
Hence, the possibility of decreasing drag through roughness is not so clear, especially for
rough wetting surfaces.

Still, in the recent years, promising results have been obtained concerning a class of rough
hydrophobic surfaces, see for instance [18]. Indeed, by the combination of the chemical and
geometrical properties of these surfaces, the hollows of the roughness get filled with gas.
Hence, the viscous fluid above does not penetrate: it slips above the hollows, and only sticks
at the bumps, reaching the so-called Cassie or fakir state.

The aim of this paper is to study the slip generated by such configurations, both in a
rigorous and quantitative manner. We focus on a model proposed in article [19], in which the
rough boundary is replaced by a flat plane, divided in small periodic cells (say of side ε� 1).
Each cell is divided in two zones:

• A no-slip zone, corresponding to a plane projection of the sticky part of the roughness
(bumps).

• A slip-zone, corresponding to a plane projection of the slippery part.

Using homogenization techniques, we derive an effective boundary condition as ε goes to zero,
depending on the characteristic scale aε of the no-slip zones. We provide in this way scaling
laws for the slip coefficients, for various configurations (patches, riblets). Such laws are in
global agreement with the formal computations led in [19]. One shows notably that the riblet
configuration is less effective than patches one (see Remark 4). All our theoretical results are
grounded by numerical computations at the end of the paper.

2 Main results

Let us first present the model under study. We consider a three-dimensional Stokes flow
between two infinite plates:

−∆u+∇p = f in Ω,

div u = 0 in Ω,
(2.1)

where Ω = T2 × (0, 1) and T2 = R2/Z2. We denote by x = (x1, x2, x3) = (xh, x3) the space
variable. The function f ∈ L2(Ω) is a given source term. On the upper surface x3 = 1, we
enforce a “no-slip” boundary condition

u|x3=1 = 0. (2.2)

On the lower surface, we assume that u satisfies alternately “perfect slip” and “no slip” bound-
ary conditions, corresponding respectively to the hollows and bumps of the rough hydrophobic
surface. More precisely, let ε > 0 and

Sε := [0, ε)2 ∼ (R/ (εZ))2 ,

2



the elementary square of side ε . For simplicity, we shall assume all along that ε−1 is an
integer. Let T ε be a Lipschitz subdomain of Sε, modeling an elementary no-slip zone. Details
about T ε will be given right below. From this elementary no-slip zone, we define a global one
inside [0, 1)2 ∼ T2:

T ε :=
⋃

k∈[|0,...,ε−1|]2
(εk + T ε) .

Finally, the boundary condition at x3 = 0 is

u3|x3=0 = 0, ∂3uh|x3=0 = 0 on (T ε)c × {0}, uh|x3=0 = 0 on T ε × {0}. (2.3)

It is easily proved that (2.1)-(2.2)-(2.3) has a unique solution (uε, pε) ∈ H1(Ω)× L2(Ω)/R.

This article is devoted to the asymptotic analysis of (uε, pε), as ε→ 0. We will distinguish
between two types of no-slip pattern T ε:

• Patches: we assume that

T ε :=


ε

2

ε

2

+ aεT, (2.4)

where

(
ε
2
ε
2

)
is the center of the square Sε, and where the domain T is relatively compact

in the square (−1/2, 1/2)2, and contains a disk of radius α > 0, centered in the origin
(see Figure 1). The parameter aε is a positive number such that aε < ε. In this case,
the no-slip zone is a union of periodically distributed patches.

• Riblets: we assume that
T ε := (εT)×

( ε
2

+ aεI
)
. (2.5)

where I ⊂ (−1
2 ,

1
2) is an open interval (see Figure 2). In this case, the no-slip zone is a

union of stripes, invariant in the x1-direction. Of course, invariance in the x2 direction
could have been considered as well. Note that later on, addressing the case of riblets,
we shall focus on two particular cases:

– f = e1: riblets parallel to the flow;

– f = e2: riblets perpendicular to the flow.

The issue is to derive a wall law for the system (2.1)-(2.2)-(2.3), that is, to replace the mixed
boundary condition (2.3) at x3 = 0 by a condition which does not depend on ε. We will show
that uε behaves asymptotically like the solution ū in H1 of (2.1)-(2.2), endowed either with
a Navier boundary condition

u3 = 0 at x3 = 0, ∂3uh = Muh at x3 = 0, (2.6)

or with a Dirichlet boundary condition

u|x3=0 = 0. (2.7)

In (2.6), M is a 2×2 non-negative matrix, whose eigenvalues have the dimension of the inverse
of a length. If M = λId, the number λ−1 is called the “slip length”. In the general case,
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Figure 1: Patch configuration. For every k = (k1, k2) ∈ [|0, . . . , ε−1|]2, the intersection of the
no-slip zone T ε with the cell [εk1, ε(k1 + 1))× [εk2, ε(k2 + 1)) is defined by εk+T ε = εk+aεT .

Figure 2: Riblet configuration. For k = (k1, k2), the intersection of the no-slip zone T ε with
the cell [εk1, ε(k1 + 1))× [εk2, ε(k2 + 1)) is defined by εk + T ε = εk + (εT)× ( ε2 + aεI).

4



the inverse of the eigenvalues provide the slip lengths in the directions of the eigenvectors.
We shall denote ūM the solution of (2.1)-(2.2)-(2.6). We will write ū0 in the special case
M = ( 0 0

0 0 ). Eventually, we shall denote ū∞ the solution of (2.1)-(2.2)-(2.7).

With the previous notation, we can state our first result:

Theorem 1. (Asymptotic behavior for patches)

Assume that T ε := ( ε2 ,
ε
2) + aεT , where T b (−1/2, 1/2)2 contains a disc of radius α > 0

centered in the origin. Let uε ∈ H1(T2 × (0, 1)) be the solution of (2.1), (2.2), (2.3). One
must distinguish between three cases:

1. Sub-critical case: if aε � ε2, then uε ⇀ ū0 in H1(T2 × (0, 1));

2. Super-critical case: if aε � ε2, then uε ⇀ ū∞ in H1(T2 × (0, 1));

3. Critical case: there exists a symmetric, positive definite matrix M0 such that if aε/ε
2 →

C0 > 0, then uε ⇀ ūC0M0 in H1(T2 × (0, 1)).

A similar result holds for riblets. Let us merely state the theorem in the critical case:

Theorem 2. (Asymptotic behaviour for riblets)

Assume that T ε := (εT)× (aεI), where I ⊂ (−1/2, 1/2) is an open interval. Suppose that
limε→0−ε ln(aε) = C0 > 0, and furthermore that f does not depend on x1.

Then, uε ⇀ ūMrib
, where

Mrib =

( π
C0

0

0 2π
C0

)
. (2.8)

Additionally, when f = e1 or f = e2, the limit system can be simplified:

• if f = e1 (riblets parallel to the main flow), then ūMrib,2 = ūMrib,3 = 0 and ūMrib,1

satisfies

∂3ūMrib,1 =
π

C0
ūMrib,1 at x3 = 0.

Hence, the slip length is C0/π;

• if f = e2 (riblets perpendicular to the main flow), then ūMrib,1 = 0 and ūMrib,2 satisfies

∂3ūMrib,2 =
2π

C0
ūMrib,2 at x3 = 0.

Hence, the slip length is C0/(2π).

Remark 3. Notice that in the critical and supercritical cases, the slip length is respectively of
order one and infinite in the limit. Therefore large slip is achieved in the limit, which differs
from previous papers on the subject (see [13, 5]).
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Remark 4. Notice that theorems 1 and 2 indicate that for a given area of no-slip, riblets are
less efficient than patches in terms of slip optimization. Indeed, consider riblets T ε with area
εaε corresponding to the critical case in Theorem 2 limε→0−ε ln(aε) = C0 > 0. Patches with
the same area have a diameter of order

√
εaε: they have a sub-critical behavior (with regards

to Theorem 1) since
√
εaε � ε2. So, uε converges towards ū0. In other words, for the same

area, patches achieve perfect slip on the lower surface, while riblets only have finite slip. In a
similar fashion, it can be proved that riblets whose area a2

ε is critical for patches - i. e. such
that aε ∼ ε2, see Theorem 1- have a super-critical behavior (with regards to Theorem 2) and
converge towards ū∞: the solution satisfies a no-slip condition at the limit.

Remark 5. Our results are consistent with those of [19]: indeed, in the case of patches, it
is shown heuristically there that the slip length is proportional to ε2/aε: in other words, if
aε � ε2, perfect slip is achieved, if aε � ε2, a no-slip condition is retrieved in the limit, and
in the critical case, the slip length is positive and finite.

Also, explicit calculations (see [16]) recalled in [19] show that the slip length for riblets
is equal to −ε/π ln(aε/ε) for riblets parallel to the flow, and to −ε/(2π) ln(aε/ε) for riblets
perpendicular to the flow. Once again, this is consistent with Theorem 2.

Remark 6. Theorems 1 and 2 do not support the idea that rough hydrophobic surfaces can
generate a substantial slip. Indeed, to obtain an effective slip law, the surface fraction of
no-slip has to be very small. Back to wall roughness, this would correspond to narrow peaks
separated by (comparatively) large hollows. It seems far from the roughness characteristics
used experimentally to obtain a hydrophobic Cassie state.

The proofs of theorems 1 and 2, that rely strongly on the papers [2, 3] by Allaire, are
given in Section 3 and 4 respectively. We then present in Section 5 numerical simulations
that confirm the asymptotic results, and clarify the influence of the shape of patches on the
slip length, i.e. on the eigenvalues of the matrix M .

3 Asymptotic study of “patch” designs

This section is devoted to the proof of Theorem 1. Let (uε, pε) ∈ H1(Ω) × L2(Ω)/R be
the solution of (2.1), (2.2), (2.3). By classical arguments, the sequence (uε, pε) is uniformly
bounded in H1(Ω) × L2(Ω)/R, and consequently, there exists a couple (u, p) ∈ H1(Ω) ×
L2(Ω)/R such that

uε ⇀ u weakly in H1(Ω), pε ⇀ p weakly in L2(Ω)/R.

Using the weak formulation of Eqs. (2.1) and the continuity of the trace operator, one obtains
easily that the weak-limit (u, p) satisfies Eqs. (2.1) and boundary condition (2.2) on x3 = 1. On
x3 = 0, the boundary condition satisfied by the vertical component is preserved in the limit,
and we obtain u3|x3=0 = 0. To describe the boundary condition satisfied by the horizontal
components (u1, u2) on x3 = 0, we need to distinguish between the so-called super-critical,
critical and sub-critical cases.

Notation. For every k = (k1, k2) ∈ [|0, ε−1|]2, we denote the elementary squares, cubes
and half-cubes as follows:

Sεk := εk + Sε, P εk := Sεk × (− ε
2
,
ε

2
), P ε,+k := P εk ∩ R3

+. (3.1)
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We shall use that notation throughout the paper.

Super-critical case: aε � ε2. The proof in the super-critical case relies on a quantitative
Poincaré inequality: we claim that there exist ε0 > 0 and a positive function η(ε) such that
η(ε)→ 0 as ε→ 0, and such that∫

T2×{0}
|uε|2 ≤ η(ε)

∫
Ω
|∇uε|2 ∀ε ∈ (0, ε0). (3.2)

We provide a proof of this inequality in the Appendix.

Since uε is bounded in H1(Ω), we immediately infer that ū|x3=0 vanishes in L2(T2). Thus
(ū, p̄) is a solution of the Stokes system with homogeneous Dirichlet boundary conditions at
x3 = 0 and x3 = 1, i.e. ū = ū∞.

Critical and sub-critical cases: aε . ε2. We follow here the strategy of articles [2, 3]
by Allaire. These articles deal with the homogenization of the Stokes equations across a
network of balls, with a Dirichlet condition at the surface of the balls. Notably, in section
4 of [2], the balls are assumed to be distributed along a hypersurface (for instance, 3d balls
with centers periodically located on a plane). In the setting considered here, the rough idea is
to extend the Stokes solution to the lower half-space by appropriate symmetry: our problem
is then reduced to the homogenization of the Stokes equations across a planar network of
patches. Hence, the ideas of [2], devoted to a planar network of balls, essentially apply. They
are based on the construction of correctors and the method of oscillating test functions. We
start with

Lemma 7 (Existence of correctors). Assume that aε . ε2. For every ε > 0, there exist
W ε = (W ε

i,j)1≤i,j≤3 ∈ H1(Ω)9, qε = (qεj)1≤j≤3 ∈ L2(Ω)3, supported in T2 × [−ε/2, ε/2], which
satisfy the following properties:

(i) W ε ⇀ 0 weakly in H1(Ω), qε ⇀ 0 weakly in L2(Ω);

(ii) for every j = 1 . . . 3,
∑

i ∂iW
ε
ij = 0 in Ω;

(iii) for 1 ≤ i, j ≤ 3, W ε
3j = W ε

i3 = 0 on T2 × {0}, and for 1 ≤ i, j ≤ 2, W ε
ij = δij on

T ε × {0};

(iv) For every φ ∈ C∞(Ω)3, every ψ ∈ H1(Ω)3 and every sequence ψε ∈ H1(Ω)3 satisfying
the boundary conditions

ψε = 0 on (T ε × {0}) ∪ (T2 × {1}), ψε3 = 0 on T2 × {0, 1}, (3.3)

and converging weakly to ψ in H1(Ω)3, the following relation holds: if limε→0 aε/ε
2 =

C0 ≥ 0, then

lim
ε→0

∑
1≤i,j≤3

(∫
Ω
∇W ε

ij · ∇ψεiφj −
∫

Ω
∂iψ

ε
iq
ε
jφj

)
= −C0

∫
T2×{0}

M0ψh · φh. (3.4)

where M0 ∈M2(R) is the symmetric definite positive matrix given by formula (3.19).
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Proof of Lemma 7. This lemma is the analogue of Proposition 4.1.6 in [3] (see also section 2.3
in [2]). As mentioned before, we do not claim any major novelty in the proof. Nevertheless,
with regards to quantitative aspects, notably the exact expression of the slip matrix C0M0,
we feel necessary to reproduce its main steps.

The starting idea is to consider a base flow (W, q) in the vicinity of T , which, after proper
rescaling, will describe accurately the corrector behavior near a single patch. We shall then
truncate it and periodize so as to obtain an appropriate global corrector. Namely, we introduce
the solution (W, q), with W = (Wij)1≤i,j≤3, q = (qi)1≤i≤3, of the following problem:

−∆Wij + ∂iqj = 0 in R3
+, 1 ≤ i, j ≤ 3, (3.5)

3∑
i=1

∂iWij = 0 in R3
+, 1 ≤ j ≤ 3, (3.6)

completed with the boundary conditions

Wij = δij on T × {0}, 1 ≤ i, j ≤ 2, (3.7)

Wi3 = W3j = 0 on R2 × {0}, 1 ≤ i, j ≤ 3, (3.8)

∂3Wij = 0 on (R2 \ T )× {0}, 1 ≤ i, j ≤ 2. (3.9)

as well as lim|x|→∞W = 0. Of course, for j = 3, we have Wi3 ≡ 0 and q3 ≡ 0. For j = 1, 2,
the existence of a unique weak solution

(W·j , qj) ∈
(
D1,2(R3

+)
)3 × L2

loc(R3
+)/R

follows from Lax-Milgram theorem. Following [10], we remind that D1,2(R3
+) is the closure

of D(R3
+) in Ḣ1(R3

+).

Asymptotic behaviour of Wij , qj. For j = 1 . . . 3, we extend qj , W1j and W2j into even
functions of x3, and W3j into an odd function of x3. We obtain in this way solutions of
the Stokes equations on R3 \ T . Proceeding exactly as in [2, p. 255], we obtain the following
asymptotic expansions

W·j(x) =
1

8π

(
Fj
|x|

+
(x · Fj)x
|x|3

)
+O

(
1

|x|2

)
as |x| → ∞. (3.10)

qj(x) =
1

4π

x · Fj
|x|3

+O

(
1

|x|3

)
as |x| → ∞, (3.11)

In formulas (3.10)-(3.11), the notation Fj corresponds to the drag force, which is defined by
(here, n+ := e3, n− := −e3):

Fj = −
∫
T×{0+}

∂W·j
∂n+

−
∫
T×{0−}

∂W·j
∂n−

+

∫
T×{0+}

qjn+ +

∫
T×{0−}

qjn−

= −2

∫
T×{0+}

∂3W·j .

(3.12)

Construction of W ε and qε. Using the extended W and q, defined in the whole of R3, we
can then proceed exactly as in [2, 3] to construct the correctors W ε and qε. Therefore, we
consider the following decomposition of P εk (see definition (3.1)):

P εk = Cεk ∪Dε
k ∪Kε

k,
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Figure 3: Each cube P εk is decomposed into a union of subdomains Cεk, D
ε
k and Kε

k, which are
separated by spheres of radius ε/4 and ε/2 centered in the cube.

where Cεk is the ball of radius ε/4 centered in the cube, Dε
k is the ball of radius ε/2, with same

center, perforated by Cεk, and Kε
k is the remaining part of the cube, that is Kε

k = P εk \Dε
k (see

Figure 3). We denote by cεk the center of cube P εk . In each part of the cube, we define W ε
·j

and qεj as follows:{
W ε
·j(x) = W·j(

x−cεk
aε

)

qεj(x) = 1
aε
qj(

x−cεk
aε

)
∀x ∈ Cεk, ,

{
∇qεj −∆W ε

·j = 0

div W ε
·j = 0

in Dε
k,

{
W ε
·j = 0

qεj = 0
in Kε

k.

Moreover, we impose
∫
Dεk
qεj = 0 and W ε

·j ∈ H1(P εk)3 (so that there is no jump of W ε across

∂Dε
k, ∂C

ε
k).

Estimates on W ε and qε. We use again the decomposition P εk = Cεk ∪ (P εk \ Cεk). The
estimates in Cεk follow from the asymptotic expansions (3.10)-(3.11) and a scaling argument:
for every ε > 0,

‖∇W ε
·j‖2L2(Cεk) ≤ Caε, ‖q

ε
j‖2L2(Cεk) ≤ Caε, ‖W

ε
·j‖2L2(Cεk) ≤ Ca

2
εε,

where C > 0 is a constant. To treat the remaining part P εk \ Cεk, we use a properly rescaled
version of standard estimates for the homogeneous Stokes equations: basically, the L2 norm,
resp.H1 norm of the solution is controlled by the L2 norm, resp.H1/2 norm of the boundary
data (see for instance [17]). Since the velocity fields W ε

·j satisfy the following pointwise
asymptotics as ε vanishes

W ε
·j = O

(aε
ε

)
on ∂Cεk ∩ ∂Dε

k, ∇W ε
·j = O

(aε
ε2

)
on ∂Cεk ∩ ∂Dε

k,

using a scaling argument, we obtain the following estimates

‖∇W ε
·j‖2L2(P εk\C

ε
k)
≤ Ca

2
ε

ε
, ‖qεj‖2L2(P εk\C

ε
k)
≤ Ca

2
ε

ε
, ‖W ε

·j‖2L2(P εk\C
ε
k)
≤ Ca2

εε, (3.13)
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for a given constant C > 0. Since 0 < aε < ε, we deduce

‖∇W ε
·j‖2L2(P εk) ≤ Caε, ‖q

ε
j‖2L2(P εk) ≤ Caε, ‖W

ε
·j‖2L2(P εk) ≤ Ca

2
εε.

As a result, summing over k ∈ [|0, ε−1|]2, we obtain the following asymptotics as ε vanishes

‖∇W ε‖2L2(Ω) = O
(aε
ε2

)
, ‖qε‖2L2(Ω) = O

(aε
ε2

)
, ‖W ε‖2L2(Ω) = O

(
a2
ε

ε

)
. (3.14)

Conclusion of the proof. Let φ ∈ C∞(Ω)3, ψ ∈ H1(Ω)3 and let ψε ∈ H1(Ω)3 be a
sequence of vector fields satisfying the boundary conditions (3.3), and converging weakly to
ψ in H1(Ω)3. In the sub-critical case aε � ε2, the asymptotics (3.14) imply that

W ε → 0 strongly in H1(Ω)9, qε → 0 strongly in L2(Ω).

Consequently, the following relation holds:

lim
ε→0

∑
1≤i,j≤3

(∫
Ω
∇W ε

ij · ∇ψεiφj −
∫

Ω
∂iψ

ε
iq
ε
jφj

)
= 0.

Thus, relation (3.4) holds with M = 0.

In the critical case limε→0
aε
ε2

= C0 > 0, we define Ω̃ = T2× (−1, 1), and we extend φj and

ψεj into even functions of x3 on Ω̃ for j = 1, 2, and φ3 and ψ3 into odd functions of x3. First,

asymptotics (3.14) imply that W ε is bounded in H1, and therefore converges weakly in H1,
up to a subsequence. Since W ε vanishes in L2(Ω), we obtain ∇W ε ⇀ 0 weakly in L2(Ω)9.
From (3.14), we also infer qεj ⇀ 0 weakly in L2(Ω), and thus the following identity holds for
every 1 ≤ i ≤ 3, 1 ≤ j ≤ 2∫

Ω
∇W ε

ij · ∇ψεiφj − qεj(∂iψεi )φj =
1

2

∫
Ω̃
∇W ε

ij · ∇ψεiφj − qεj(∂iψεi )φj

=
1

2

∫
Ω̃
∇W ε

ij · ∇(ψεiφj)− qεj∂i(ψεiφj) + o(1), as ε→ 0.

Moreover,∫
Ω̃
∇W ε

ij · ∇(φjψ
ε
i )− qεj∂i(φjψεi ) =

∑
k

∫
P εk

∇W ε
ij · ∇(φjψ

ε
i )− qεj∂i(φjψεi )

=
∑
k

∫
Cε,+k

∇W ε
ij · ∇(φjψ

ε
i )− qεj∂i(φjψεi )

+
∑
k

∫
Cε,−k

∇W ε
ij · ∇(φjψ

ε
i )− qεj∂i(φjψεi ) +

∑
k

∫
P εk\C

ε
k

∇W ε
ij · ∇(φjψ

ε
i )− qεj∂i(φjψεi ),

where Cε,±k = Cεk ∩ R3
±. In all sums, k ranges over [|0, ε−1|]2. Using the estimates (3.13), we

infer that∑
k

∫
P εk\C

ε
k

∇W ε
ij · ∇(φjψ

ε
i )− qεj∂i(φjψεi ) ≤ C

(
‖∇W ε‖L2(∪kP εk\C

ε
k) + ‖qε‖L2(∪kP εk\C

ε
k)

)
≤ C

(
a2
ε

ε

1

ε2

)1/2

� 1.
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At this stage the proof differs slightly from the one of [3], because of the mixed boundary
conditions at x3 = 0. Indeed, since (W ε, qε) satisfies the Stokes system in Cε,±k , we have∫

Cε,±k

∇W ε
ij · ∇(φjψ

ε
i )−

∫
Cε,±k

qεj∂i(φjψ
ε
i ) =

∫
∂Cε,±k

(
∂W ε

ij

∂n
− qεjn · ei

)
φjψ

ε
i ,

where n denotes the outer normal to the set Cε,±k . In particular, due to the symmetry
properties of W ε, qε, φ, ψε, there holds∫

Cε,+k

∇W ε
ij · ∇(φjψ

ε
i )−

∫
Cε,+k

qεj∂i(φjψ
ε
i ) +

∫
Cε,−k

∇W ε
ij · ∇(φjψ

ε
i )−

∫
Cε,−k

qεj∂i(φjψ
ε
i )

=

∫
∂Cεk

(
∂W ε

ij

∂n
− qεjn · ei

)
φjψ

ε
i − 2

∫
Cεk∩{z=0}

∂3W
ε
ijφjψ

ε
i .

By definition of W , ∂3W
ε
ij = 0 on (Cεk ∩ {x3 = 0}) \ (T ε × {0}). On the other hand, since

ψε satisfies (3.3), ψεi = 0 on T ε × {0}. Therefore, the r.h.s. reduces to the integral on ∂Cεk.
From now on, in order to avoid confusion, we denote by nk the normal vector to the ball Cεk.
Using the asymptotic expansions (3.10)-(3.11) and the expression of W ε

ij , q
ε
j in Cεk, we obtain,

on ∂Cεk,
∂W ε

ij

∂nk
− qεjnk · ei = −aε

ε2

[
2

π
Fij +

6

π
ei · nkFj · nk

]
+
(aε
ε2

)2
εRεij ,

where Rεij is a function of x, satisfying Rεij(x) = O(1) as ε → 0, uniformly in x and k. This
leads to the following decomposition∫

Ω̃
∇W ε

ij · ∇(φjψ
ε
i )−

∫
Ω̃
qεj∂i(φjψ

ε
i ) = −aε

ε2

∑
k

∫
∂Cεk

[
2

π
Fij +

6

π
ei · nkFj · nk

]
φjψ

ε
i

+
(aε
ε2

)2∑
k

∫
∂Cεk

εRεijφjψ
ε
i + o(1).

Let δ∂Cεk be the unit mass concentrated on ∂Cεk. We use the following Lemma, proved by

Allaire1:

Lemma 8 (see Lemma 4.2.1 in [3]).∑
k

δ∂Cεk →
π

16
δT2×{0} strongly in H−1(Ω̃),∑

k

ei · nknkδ∂Cεk →
π

48
eiδT2×{0} strongly in H−1(Ω̃).

(3.15)

Let us write ∑
k

∫
∂Cεk

φjψ
ε
i =

〈∑
k∈Kε

δ∂Cεk , φjψ
ε
i

〉
H−1(Ω̃)×H1

0 (Ω̃)

,

∑
k

∫
∂Cεk

ei · nknkφjψεi =

〈∑
k

ei · nknkδ∂Cεk , φjψ
ε
i

〉
H−1(Ω̃)×H1

0 (Ω̃)

;

(3.16)

1Notice that in the paper of Allaire, the periodicity of the pattern is 2ε, rather than ε as in the present
paper. Hence the constant in front of the Dirac mass in the right-hand side is π/16, rather than π/64 for the
first line, and π/48 rather than π/192 in the second line.
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consequently, since φjψ
ε
i → φjψi weakly in H1(Ω̃) and aε

ε2
→ C0, we obtain

lim
ε→0

aε
ε2

∑
k

∫
∂Cεk

[
2

π
Fij +

6

π
Fj · nknk · ei

]
φjψ

ε
i =

1

4
C0

∫
T2×{0}

Fijφjψi. (3.17)

Moreover, sinceRεij is uniformly bounded in L∞(Ω̃), we use the following comparison principle:

Lemma 9 (see Lemma 2.3.8 in [2]). Let αε and βε be two positive functions in H−1(Ω) such
that

0 ≤ αε ≤ βε.

If βε converges strongly to zero in H−1(Ω), then so does αε.

Whence we deduce from (3.15) that

ε
∑
k

Rεijδ∂Cεk → 0 strongly in H−1(Ω̃).

Using (3.16), we obtain the following convergence:(aε
ε2

)∑
k

∫
∂Cεk

εRεijφjψ
ε
i → 0 as ε→ 0. (3.18)

Gathering the convergence results (3.17)-(3.18), we obtain relation (3.4), where the matrix
M0 is defined by

M0,ij =
1

8
Fij , F·j given by (3.12) (3.19)

There only remains to prove that the matrix (Fij)1≤i,j≤2 is negative definite. To that end,
we go back to system (3.5)-(3.9). We multiply by W·i the system satisfied by W·j , and we
obtain

Fij = −2

∫
T×{0}

∂3Wij = −2

∫
R3
+

∇W·i : ∇W·j .

In particular, for all η ∈ R2,∑
1≤i,j≤2

ηiηjFij = −2

∫
R3
+

|∇(η1W·1 + η2W·2)|2 ≤ 0,

and the right-hand side above vanishes if and only if η1W·1 +η2W·2 = 0 a.e. in R3
+. In view of

the boundary conditions (3.7), this implies η1 = η2 = 0. This concludes the proof of Lemma
7.

To complete the proof of Theorem 1, we rely on Lemma 7, as follows. Let φ ∈ C∞(Ω
3
)

satisfying the no-slip condition φ = 0 on the upper boundary T2×{1}, and the non-penetration
condition φ3 = 0 on the lower boundary T2 × {0}. Let W ε ∈ H1(Ω)9, qε ∈ L2(Ω)3 be
the sequences introduced in Lemma 7. We define the following test functions for the weak
formulation associated to system (2.1)-(2.3):

φε = (I3 −W ε)φ, rε = qεφ,

12



where I3 is the identity matrix in M3(R). We deduce the following relation:∫
Ω
∇uε : ∇φε −

∫
Ω
pεdiv φε =

∫
Ω
fφε (3.20)∫

Ω
rεdiv uε = 0. (3.21)

Since W ε converges weakly to 0 in H1(Ω)9, and strongly to 0 in L2(Ω)9, we readily obtain∫
Ω
∇uε : ∇φε =

∫
Ω
∇uε : ∇φ−

∫
Ω
∇uεi∇W ε

ijφj −
∫

Ω
∇uεi∇φjW ε

ij

=

∫
Ω
∇u : ∇φ−

∫
Ω
∇uεi∇W ε

ijφj + o(1), as ε→ 0,

−
∫

Ω
pεdiv φε = −

∫
Ω
pε(I3 −W ε) : ∇φ = −

∫
Ω
p div φ+ o(1), as ε→ 0.

Consequently, summing relations (3.20) and (3.21), we deduce the asymptotic relation∫
Ω
∇u : ∇φ−

∫
Ω
p div φ−

∫
Ω
∇uεi∇W ε

ijφj +

∫
Ω
qεφ div uε = o(1), as ε→ 0.

Applying Lemma 7 with ψ = u and ψε = uε, we obtain the following relation:∫
Ω
∇u : ∇φ−

∫
Ω
p div φ+ C0

∫
T2×{0}

M0u · φ = 0, (3.22)

where the matrix M0 ∈M2(R) is defined by (3.19). Since relation (3.22) holds for every test
function φ, this proves that u = uC0M0 .

4 Asymptotic study of “riblet” designs

This section is devoted to the proof of Theorem 2. In the case of riblets, we recall that T ε is
invariant by translation in x1. Since f = (f1, f2, f3) is also independent on the x1 variable,
the solution (uε, pε) of system (2.1)-(2.2)-(2.3) depends only on (x2, x3). As a result, the first
component of uε satisfies:

−∆2,3u
ε
1 = f1 in T× (0, 1),

uε1 = 0 on T× {1},
∂3u

ε
1 = 0 on (T× {0}) \ (ΠT ε), uε1 = 0 on ΠT ε,

(4.1)

where ∇2,3 and ∆2,3 stand for the gradient (resp. the Laplacian) with respect to the (x2, x3)
variables, T1 = R/Z and where we have denoted Π the projection operator defined by
Π(x1, x2, 0) = (x2, 0). In the same fashion, (uε2, u

ε
3), pε satisfy the following Stokes problem:

−∆2,3

(
uε2
uε3

)
+∇2,3p

ε =

(
f2

f3

)
in T× (0, 1),

∇2,3 ·
(
uε2
uε3

)
= 0 in T× (0, 1),

uε2 = uε3 = 0 on T× {1},
uε3 = 0 on T× {0},

∂3u
ε
2 = 0 on (T× {0}) \ (ΠT ε), uε2|x3=0 = 0 on ΠT ε.

(4.2)
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Hence, the original 3d problem reduces to the study of two independent systems (with a
Laplace and a Stokes equations), set in the 2d domain T × (0, 1). This change from a 3d to
a 2d setting explains the change of scalings between Theorem 1 and Theorem 2.

To handle the Stokes equations (4.2), we proceed like in the previous section: in short,
we adapt the homogenization techniques of [2, 3], dedicated to the Stokes flow across a
periodic network of balls, set along an hypersurface. As mentioned before, the difference is
the dimension of the domain. One must this time consider the 2d results of [3], about periodic
network of disks along a line. For brevity, we do not give further details. We eventually obtain
the following limit system:

−∆2,3

(
u2

u3

)
+∇2,3p =

(
f2

f3

)
in T1 × (0, 1),

∇2,3 ·
(
u2

u3

)
= 0 in T1 × (0, 1),

u2 = u3 = 0 on T1 × {1},
u3 = 0 on T1 × {0},

∂3u2 =
2π

C0
u2 on T1 × {0},

(4.3)

where we recall that C0 := limε→0−ε ln |aε|. As regards the Laplace equation (4.1), the idea is

exactly the same. Actually, the situation is even simpler, and has been analysed for a longer
time. Namely, one may start from the work of Cioranescu and Murat [8], instead of [2, section
4]. Again, we leave the details to the reader. In our setting, the limit system is

−∆2,3ū1 = f1 in T1 × (0, 1),

ū1 = 0 on T1 × {1},

∂3ū1 =
π

C0
ū1 on T1 × {0}.

(4.4)

We deduce from systems (4.4) and (4.3) that u = uMriblets
, Mriblets being given by (2.8).

The sub-cases where f = e1 or f = e2 follow easily.

5 Numerical simulations

This section is devoted to simulations of system (2.1)-(2.2)-(2.3). For simplicity, we shall
restrict to constant source term (average pressure gradient), say

f = 2e, e ∈ span(e1, e2).

The idea is to recover numerically the scalings for the slip length given in Theorems 1 and
2. However, to observe significant slip implies to consider very small scales: patches of size
less than ε2, in a grid of side ε. This forbids direct computations. To overcome this difficulty,
we shall rely on a boundary layer approximation of the Stokes flow. Such approximation,
often implicitly used in physics papers, has been fully justified in the context of wall laws:
see [13, 9, 4] among many others.
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The starting point is to write the exact solution uε as

uε(x) = uP (x) + εvε(x/ε)

where uP is the reference Poiseuille flow, satisfying (2.1) with Dirichlet condition at both
planes. Remind that

uP (x) = −x3(x3 − 1)e.

Hence, vε = (vεh(y), vε3(y)) satisfies

−∆v +∇p = 0, in T2 × (0, ε−1),

div v = 0, in T2 × (0, ε−1),

v = 0, y3 = ε−1,

v3 = 0, y3 = 0,

vh = 0, y ∈ ε−1T ε × {0}, ∂y3vh = −e, y ∈ ε−1(T ε)c × {0}

(5.1)

Note that no approximation has been made so far. It is then tempting to put the roof y3 = ε−1

at infinity replacing T2 × (0, ε−1) by T2 × R+. However, it is well-known that the resulting
problem is overdetermined. Namely, the boundary layer field vε,bl satisfying

−∆v +∇p = 0, in T2 × R+,

div v = 0, in T2 × R+,

v3 = 0, y3 = 0,

vh = 0, y ∈ ε−1T ε × {0}, ∂y3vh = −e, y ∈ ε−1(T ε)c × {0}

(5.2)

has constant horizontal average:

vε,∞h :=

∫
T2

vε,blh (y)dy1dy2

with respect to y3. More precisely, it can be shown that

vε,bl → (vε,∞h , 0)

exponentially fast as y3 goes to infinity. Furthermore, by linearity of (5.2), one may denote
vε,∞h = V ε,∞ e for a two by two matrix V ε,∞. Then, one can show that V ε,∞ is symmetric
positive definite, with

V ε,∞ e · e =

∫
T2×R+

|∇vε,bl|2.

Note that everything depends on ε, through the rescaled domain ε−1T ε in (5.2).

To correct the ”boundary layer constant” at infinity, one must add a macroscopic Couette
flow. One ends up with

uε ≈ uP (x) + εvε,bl(x/ε) − εx3(V ε,∞e, 0)

Averaging in the small scale, we find

uεh|x3=0 ≈ εV ε,∞e, ∂3u
ε|x3=0 ≈ ∂3u

P |x3=0 ≈ e.
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We end up with the approximate boundary condition

uεh = εV ε,∞∂3u
ε
h at x3 = 0. (5.3)

On the basis of the previous reasoning, one can implement the following strategy for the
numerical computation of the slip length:

• Compute numerically (say with e = e1 and e = e2) the solution of (5.2), in order to
determine the matrix V ε,∞.

• Check for the asymptotics of εV ε,∞, for various shapes and sizes of the no-slip zone
T ε. This allows to make the comparison with theoretical results of Theorems 1 and 2.
Indeed, sending ε to zero in (5.3) yields

ūh = lim
ε→0

(εV ε,∞) ∂3ūh at x3 = 0, (5.4)

so that the matrix M in the theorems satisfies M−1 = limε→0 (εV ε,∞).

Numerical approximation of the matrix V ε,∞. In the numerical simulations, we will
solve the system (5.2) associated to different shapes of the no-slip zone T ε: circular or rect-
angular patches, and riblets parallel or orthogonal to the flow. Let us first notice that for
such configurations, the matrix V ε,∞ is diagonal. Indeed, since the domain ε−1T ε is sym-
metric with respect to the axis {y2 = 1/2}, if we denote by v the solution to system (5.2)
with e = e1, then the vector field v∗ defined by v∗i (y1, y2, y3) = vi(y1, 1− y2, y3), for i = 1, 3,
and by v∗2(y1, y2, y3) = −v2(y1, 1 − y2, y3), is also a solution. By uniqueness, we deduce that
v2(y1, 1− y2, y3) = −v2(y1, y2, y3) for a.e. (y1, y2, y3) ∈ T2 ×R+, which yields V ε,∞e1 · e2 = 0.
By symmetry of V ε,∞, we obtain also that V ε,∞e2 · e1 = 0

Consequently the boundary conditions satisfied by the horizontal components of the ap-
proximate solution to system (2.1)-(2.2)-(2.3) on x3 = 0, simply writes:

uεi = ε(V ε,∞ei · ei) ∂3u
ε
i at x3 = 0, for i = 1, 2. (5.5)

In the rest of this section, for i = 1, 2, the quantity V ε,∞ei ·ei will be refered to as the average
slip length associated to our problem, in the direction ei.

To compute an approximate value of the average slip length associated to system (5.2),
we consider a truncated domain T2× (0, H), for a given H > 0, and we introduce the solution
w to the following problem:

−∆w +∇q = 0, in T2 × (0, H),

div w = 0, in T2 × (0, H),

∂y3w − q e3 = 0, y3 = H,

w3 = 0, y3 = 0,

wh = 0, y ∈ ε−1T ε × {0}, ∂y3wh = −e, y ∈ ε−1(T ε)c × {0}

(5.6)

Using arguments developed in [14], the difference between vε,bl and w can be estimated
as follows. First, we claim that vε,bl satisfies the following H1 bound:

‖∇vε,bl‖L2(T2×R+) ≤ C
√

ε

aε
, (5.7)
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where C is a constant which does not depend on ε. This bound follows from a quantitative
trace inequality, whose proof is similar to the one of (3.2): there exists a constant C > 0 such
that for all bε ∈ (0, 1), for all v ∈ H1(T2× (0, 1)) such that v|x3=0 vanishes on a ball of radius
bε,

‖v|x3=0‖L2(T2) ≤
C√
bε
‖∇v‖L2(T2×(0,1)).

Then, we decompose vε,bl into horizontal Fourier series and we derive exponential decay
bounds: for all s ∈ N, there exists a constant γs > 0, which does not depend on ε, such that

‖vε,bl(·, x3)− (V ε,∞ e, 0)‖L2(T2) ≤ C
√

ε

aε
exp(−γ0x3),∑

α∈N3,|α|≤s

‖∇αvε,bl(·, x3)‖L2(T2) ≤ C
√

ε

aε
exp(−γsx3).

(5.8)

As a consequence, vε,bl is a solution of (5.6) in T2× (0, H), with a slightly modified condition
at y3 = H, namely

∂y3v
ε,bl − pε,bl e3 = F ε at y3 = H,

with ‖F ε‖Hs(T2) ≤ C
√

ε

aε
exp(−γsH) ∀s ∈ N and

∫
T2

F ε = 0.

It follows that there exist constants C, γ > 0 such that

‖∇(vε,bl − w)‖2L2(T2×(0,H)) ≤ C
ε

aε
exp(−γH).

Notice also that w, as vε,bl, has constant horizontal average and that∫ H

0

∫
T2

|∇w|2 =

∫
T2

w(y) dy1 dy2.

We solve problem (5.6) by a finite element method. We use P2 elements for the velocity
and P1 elements for the pressure. The three-dimensional mesh of the fluid domain T2×(0, H)
is obtained by a constrained Delaunay tetrahedralization. The incompressibility condition is
treated by a Lagrange multiplier (see [11], [12]).

Given two approximate solutions w1
app, w

2
app of system (5.6), associated respectively to

e = e1 and e = e2, we define the numerical approximation V ε,∞
app of the matrix V ε,∞, by the

following formula:

V ε,∞
app ei · ej :=

∫
T2

wiapp(y1, y2, H) · ej dy1dy2, for i, j = 1, 2.

By analogy with formula (5.5), for i = 1, 2, the approximate average slip length in direction
ei is then defined by V ε,∞

app ei · ei.
Finally, we introduce the solid fraction φεs, which is defined by the relative area of the

no-slip zone T ε in the elementary square of size ε (or equivalently, by the area of the rescaled
no-slip domain ε−1T ε). Using definitions (2.4)-(2.5), φεs is given by the following expressions:

• in the case of patches, φεs =
(aε
ε

)2
|T |, where |T | stands for the area of the domain T ;
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• in the case of riblets, φεs =
aε
ε
|I|, where |I| stands for the length of the interval I.

Notice that system (5.2) is completely determined by φεs and by the domain T (in the case of
patches) or the union of intervals I (in the case of riblets).

Computation of the average slip length, in the case of patches. In the case of
patches, we have plotted V ε,∞

app e1 · e1 against 1/
√
φεs, considering circular and squared patches

(see Figure 4). We observe that the dependency is affine, and a linear regression gives the
relation V ε,∞

app e1 · e1 ≈ α/
√
φεs + β, with α = 0.322, β = −0.429 in the case of the disk, and

α = 0.311, β = −0.422 in the case of the square. Note that these coefficients are very close
to the ones obtained by Ybert et al. [19]. Consequently, since limε→0 φ

ε
s = 0,

V ε,∞
app e1 · e1 ∼

α√
φεs

as ε→ 0. (5.9)

To compare this numerical result with the theoretical result given by Theorem 1, let
us consider the critical case aε/ε

2 → C0 > 0. In that case, there exists a two by two
matrix M0, depending on the pattern T , such that limε→0 εV

ε,∞ = 1
C0
M−1

0 . For circular
or squared patterns centered in the unit square, as observed above, the matrices V ε,∞, and
consequently the matrix M0, are diagonal. Moreover, since these patterns are invariant by
a rotation of angle π/2, one can easily see that the corresponding matrix V ε,∞ satisfies

V ε,∞e1 · e1 = V ε,∞e2 · e2. Consequently, there exists λ0 > 0 such that M0 =
(
λ0 0
0 λ0

)
, and the

following relation holds:

lim
ε→0

εV ε,∞e1 · e1 =
1

C0 λ0
.

Besides, using the definition of φεs in the case of patches, the asymptotic relation (5.9) yields

lim
ε→0

εV ε,∞
app e1 · e1 =

α

C0

√
|T |

.

Thus, the numerical value of the slip length α/(C0

√
|T |), that can be deduced from the

asymptotic behavior (5.9) in the critical case, is consistent with Theorem 1. The coefficient
of the matrix M0 can be approximated by λ0 ≈

√
|T |/α.

We notice that the results concerning the sub-critical and super-critical cases can also
be retrieved, at least formally, from relation (5.9). Indeed, since ε/

√
φεs = ε2/(aε

√
|T |), we

obtain in the sub-critical case: limε→0 εV
ε,∞
app e1 · e1 = +∞, which corresponds formally to an

infinite slip length in the e1 direction, that is, a perfect slip condition. In the same manner,
in the super-critical case, we obtain limε→0 εV

ε,∞
app e1 · e1 = 0, which corresponds to adherence

in the e1 direction.

Computation of the average slip length, in the case of riblets. In that case, exact
computations are available in the literature, that give the average slip lengths in the e1 and
e2 direction as a function of the solid fraction φεs (see for instance [16]):

V ε,∞e1 ·e1 = − ln
[
cos
(π

2
(1− φεs)

)]
/π, V ε,∞e2 ·e2 = − ln

[
cos
(π

2
(1− φεs)

)]
/(2π). (5.10)

We have plotted in Figure 5 the computed value of the average slip lengths V ε,∞
app e1 · e1 and

V ε,∞
app e2 · e2, against φεs, as well as the exact values defined by formulas (5.10). We observe

that the numerical values are close to the expected ones.
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Once again, formulas (5.10) and the numerical behavior of the average slip length shown
in Figure 5, are consistent with the theoretical results of Theorem 2. Indeed, in the critical
case limε→0−ε ln(aε) = C0 > 0, using the expression φεs = (aε|I|)/ε, one obtains by a straight-
forward computation that ε ln

[
cos
(
π
2 (1− φεs)

)]
→ −C0 as ε→. Consequently, the slip length

in the directions e1 and e2 are respectively given by

lim
ε→0

εV ε,∞e1 · e1 =
C0

π
, lim

ε→0
εV ε,∞e2 · e2 =

C0

2π
.

Influence of the shape of the no-slip area: comparative results. In order to provide
a comparison between the efficiency of patches and riblets in terms of slip length, we consider
the slip length in the direction of the constant pressure gradient f = 2ei, with i = 1 or i = 2.
For circular or squared patterns, the average slip length is given by V ε,∞e1 · e1. In the case
of riblets, we consider two configurations of physical interest:

• riblets parallel to the flow: f = 2e1, the average slip length is defined by V ε,∞e1 · e1;

• riblets orthogonal to the flow: f = 2e2, the average slip length is V ε,∞e2 · e2.

The results are plotted in Figure 6. As stated in Remark 4, page 6, these numerical results
confirm that the riblets parallel to the flow are not necessarily optimal. Indeed, if the solid
fraction φεs is small enough, say φεs < 0.1, the circular or squared patches produce a superior
slip length.

To estimate the influence of the shape of the pattern on the slip length, we have con-
sidered families of rectangles of fixed area φεs, that are centered in the unit square. For
φεs = 0.01, 0.04, 0.09 we have computed the average slip length V ε,∞

app e1 · e1, in the direction e1,
associated to each of these rectangular patterns. The results are plotted in figure 7, against
the dimension L of each rectangular pattern, in the e1 direction. For each solid fraction φεs,
the extremal values associated to L = φεs and L = 1, correspond respectively to a riblet
orthogonal to the flow, and parallel to the flow.

We notice that, for each family of rectangular patterns of fixed area, the riblet orthogonal
to the flow provides always the smallest average slip length. As already mentionned, the riblet
parallel to the flow is not optimal, especially for small values of the solid fraction φεs = 0.01,
φεs = 0.04. In that cases, the curves present a unique maximum, and the associated optimal
size L of the rectangle is slightly superior to the size

√
φεs of the square of same area. For these

values of the solid fraction, the optimal rectangular pattern will present a certain anisotropy
in the direction of the flow.

Appendix: proof of inequality (3.2)

To obtain inequality (3.2), it is enough to prove that for every k ∈ [|0, ε−1|]2,∫
Sεk×{0}

|uε|2 ≤ η(ε)

∫
Bε,+k

|∇uε|2 ∀0 < ε < ε0. (5.11)

A summation over k ∈ [|0, ε−1|]2 then leads to inequality (3.2).
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Let k ∈ [|0, ε−1|]2. By rescaling the trace inequality in the half cube [0, 1]2 × [0, 1
2 ], we

obtain the existence of a constant C > 0 such that∫
Sεk×{0}

|uε|2 ≤ C

(
ε

∫
P ε,+k

|∇uε|2 +
1

ε

∫
P ε,+k

|uε|2
)
. (5.12)

To estimate the L2 norm of uε by the L2 norm of its gradient, we adapt [3, Lemma 3.4.1]
to our bidimensional array of holes. We denote by Bε

k the ball circumscribing the cube P εk .
Of course, the upper half-cube P ε,+k is contained in the upper half-ball Bε,+

k . Moreover, since
the model no-slip zone T contains a disk of radius α centered at the origin, each elementary
no-slip pattern εk + T ε contains a disk of radius aεα, centered in the square Sεk. Let B̃ε

k be
the 3d ball of same center and radius, and B̃ε,+

k be the corresponding half ball. With this
notation, we can write ∫

P ε,+k

|uε|2 ≤
∫
Bε,+k \B̃ε,+k

|uε|2 +

∫
B̃ε,+k

|uε|2.

To estimate the contribution of the exterior part Bε,+
k \ B̃ε,+

k , we use spherical coordinates

(ρ, φ, θ) centered at point εk + ( ε2 ,
ε
2 , 0). The radius of Bε

k being equal to ε
√

3
2 , integrating

along rays, we get for every r′, r such that 0 < r′ < aεα < r < ε
√

3
2 ,

uε(r, φ, θ) = uε(r′, φ, θ) +

∫ r

r′
∂ρu

ε(ρ, φ, θ)dρ,

which yields

|uε(r, φ, θ)|2 ≤ 2|uε(r′, φ, θ)|2 + 2

(∫ r

r′
∂ρu

ε(ρ, φ, θ)dρ

)2

.

Multiplying last inequality by r2(r′)2 sin θ and integrating on r′ ∈ (0, aεα), r ∈ (aεα,
ε
√

3
2 ),

φ ∈ (0, 2π), θ ∈ (0, π/2), we obtain the inequality

Iε ≤ 2J ε + 2Kε (5.13)

where the integrals Iε, J ε, Kε are respectively defined by

Iε =

∫ aεα

r′=0

∫ ε
√
3

2

r=aεα

∫
θ

∫
φ
|u(r, φ, θ)|2r2(r′)2 sin θ dθ dφ dr dr′,

J ε =

∫ aεα

r′=0

∫ ε
√
3

2

r=aεα

∫
θ

∫
φ
|u(r′, φ, θ)|2r2(r′)2 sin θ dθ dφ dr dr′,

Kε =

∫ aεα

r′=0

∫ ε
√
3

2

r=aεα

∫
θ

∫
φ

(∫ r

r′
∂ρu

ε(ρ, φ, θ)dρ

)2

r2(r′)2 sin θ dθ dφ dr dr′.

By Fubini theorem,

Iε =

(∫ aεα

0
(r′)2dr′

)(∫ ε
√
3

2

r=aεα

∫
θ

∫
φ
|u(r, φ, θ)|2r2 sin θ dθ dφ dr

)
=
a3
εα

3

3

∫
Bε,+k \B̃ε,+k

|uε|2,
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and by an analogous computation,

J ε =

(
ε3
√

3

8
− a3

εα
3

3

)∫
B̃ε,+k

|uε|2.

By Schwarz inequality,(∫ r

r′
∂ρu

εdρ

)2

≤
(∫ r

r′

1

ρ2
dρ

)(∫ r

r′
ρ2|∂ρuε|2dρ

)
≤ 1

r′

∫ r

r′
ρ2|∂ρuε|2dρ,

which yields

Kε ≤

(∫ ε
√
3

2

aεα
r2 dr

)(∫ aεα

0
r′ dr′

)(∫
Bε,+k

|∇uε|2
)
≤
√

3

16
a2
εα

2ε3
∫
Bε,+k

|∇uε|2.

Consequently, inequality (5.13) leads to∫
Bε,+k \B̃ε,+k

|uε|2 ≤ 3
√

3

8

ε3

aεα

(
2

a2
εα

2

∫
B̃ε,+k

|uε|2 +

∫
Bε,+k

|∇uε|2
)
. (5.14)

Since uε vanishes on B̃ε,+
k ∩ (R2 × {0}), using Poincaré inequality in a cylinder of height aεα,

we obtain the following estimate:∫
B̃ε,+k

|uε|2 ≤ a2
εα

2

∫
Bε,+k

|∇uε|2.

Injecting this inequality into estimate (5.14), we obtain:∫
Bε,+k \B̃ε,+k

|uε|2 ≤ 9
√

3ε3

aεα

∫
Bε,+k

|∇uε|2,

and summing these two inequalities, we get∫
Bε,+k

|uε|2 ≤

(
a2
εα

2 +
9
√

3ε3

aεα

)∫
Bε,+k

|∇uε|2.

Finally, using inequality (5.12), we obtain estimate (5.11), where η(ε) is defined by

η(ε) = C

(
ε+

a2
εα

2

ε
+

9
√

3ε2

aεα

)
,

and converges to 0 as ε→ 0, since aε < ε and aε � ε2.
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